
1 © Nokia 2016

Towards Effective Static Analysis Approaches

for Security Vulnerabilities in Smart Contracts

Asem Ghaleb

 PhD Candidate @ UBC, Canada

 Advisors: Karthik Pattabiraman and Julia Rubin

ASE 2022 Doctoral Symposium October 10th, 2022

2

Ethereum smart contracts

[1] https://etherscan.io/stat/supply

[2] https://crypto.news/23-ether-eth-supply-locked-smart-contracts

Transaction

Increasing adoption

● Finance, supply chain, gaming, etc

● Hold nearly 23% of Ethereum supply (~$161B), as of Sep 2022 [1] [2]

3

● Several attack incidents

Security vulnerabilities in smart contracts

(2016) The DAO
Attacked: Code Issue
Leads to $60 Million
Ether Theft

(2021) ValueDeFi:
$10 Million lost
due to a basic
mistake by the
development team

(2017) Yes, this kid
really just deleted
$300 Million by
messing around
with Ethereum’s
smart contracts

(2022) Found a critical
bug that could have
blocked all future
actions from a
contract-owning
governance system.

4

Vulnerability example

1 contract ProfitSharingRewardPool{
2 address operator = msg.sender;
3 bool initialized = false;
4 modifier onlyOperator {
5 require (operator == msg.sender);
6 _;
7 }
8 function initialize() public {
9 require (!initialized);
10 // omitted code
11 operator = msg.sender;
12
13 }
14
15 function governanceRecoverUnsupported external onlyOperator{
16 //omitted code
17 }
18
19 }

initialized = true;

(2021) ValueDeFi:
$10 Million lost due
to a basic mistake by
the development
team

5

● Tools with high false-negatives and false-positives

● Our evaluation shows that static tools:

 Search for predefined syntactic patterns

  Fail on simple variations

  Over-approximate

 Enumerate symbolic traces

  Sequence of transactions to trigger most vulnerabilities

  Path explosion and scalability issues

Static analysis tools: current state

6

Thesis goal

Build effective static analysis approaches for detecting

security vulnerabilities in smart contracts

Evaluating existing smart contract static

analysis tools

Proposing effective detection approaches

for security vulnerabilities

7

Solution insight

Find generic security properties and use lightweight

static analysis to find violations of these properties

8

Contributions overview

Effectiveness of the

Evaluated tools
Gas-related

vulnerabilities

Access control

vulnerabilities

SolidiFI
ISSTA’20

eTainter AChecker
ISSTA’22

Evaluating existing smart contract static

analysis tools

Proposing effective detection approaches

for security vulnerabilities

Ongoing

work

9

Contributions overview

Gas-related

vulnerabilities

Access control

vulnerabilities

SolidiFI
eTainter AChecker

ISSTA’22
ISSTA’20

SolidiFI source code: https://github.com/DependableSystemsLab/SolidiFI

Evaluating existing smart contract static

analysis tools

Proposing effective detection approaches

for security vulnerabilities

Effectiveness of the

Evaluated tools

Ongoing

work

https://github.com/DependableSystemsLab/SolidiFI

10

● Code vulnerabilities are still reported frequently

● No evaluation methodology of static analyzers

● Key Idea: inject bugs into the source code of smart contracts

Goal

A systematic approach for evaluating efficacy of smart contract static

analysis tools on detecting bugs

11

● All tools have many undetected cases

● All tools reported false positives

● Tools with low false negatives reported high false positives

 Analyzers that detect bugs with low false positives are needed

Findings summary

SolidiFI artifact:

https://github.com/DependableSystemsLab/SolidiFI-benchmark

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI

12

Contributions overview

Gas-related

vulnerabilities

Access control

vulnerabilities

SolidiFI
eTainter AChecker

ISSTA’22
ISSTA’20

eTainter source code: https://github.com/DependableSystemsLab/eTainter

Evaluating existing smart contract static

analysis tools

Proposing effective detection approaches

for security vulnerabilities

Effectiveness of the

Evaluated tools

Ongoing

work

https://github.com/DependableSystemsLab/eTainter

13

● Executing contract costs gas

● Gas cost for every EVM low-level instruction (opcode)

● Contract’s users pay the gas cost

 User specifies

Smart contracts: Gas concept

Function to call

Max gas user wants to spend on executing the function

PUSH1 0x64 |3
SWAP1 |3
CALLVALUE |2
MUL |5
PUSH1 0x02 |3
SLOAD |100/2100
PUSH1 |3
SWAP1 |3
DUP2 |3
MSTORE |X
PUSH1 0x08 |3
PUSH1 0x20 |3
MSTORE |X

EVM bytecode opcodes

Gas cost

14

● Dependency on gas can result in vulnerabilities

● Attackers increase gas cost to force unwanted behavior (e.g., DoS)

Gas-related attacks and consequences

contract

state

updated

state

Rollback changes

Out of gas

Transaction

Exceeding block gas limit

Rollback changes

15

eTainter approach: Example

Taint tracking

Sink: i< orders[game].length

Sources:

 msg.sender

 betPrice

 winPrice

1 contract PIPOT {
2 struct order {
3 address player;
4 uint betPrice;
5 }
6 mapping (uint => order[]) orders ;
7
8 function buyTicket (uint betPrice) public payable {
9 orders[game].push(order(msg.sender, betPrice));
10 //some code
11 }
12
13 function pickTheWinner(uint winPrice) public {
14 //some code
15 for(uint i=0; i< orders[game].length; i++){
16 if (orders[game][i].betPrice == winPrice){
17 orders[game][i].player.transfer(toPlayer);
18 }
19 }
20 }

16

eTainter approach: Example

Taint tracking 1 contract PIPOT {
2 struct order {
3 address player;
4 uint betPrice;
5 }
6 mapping (uint => order[]) orders ;
7
8 function buyTicket (uint betPrice) public payable {
9 orders[game].push(order(msg.sender, betPrice));
10 //some code
11 }
12
13 function pickTheWinner(uint winPrice) public {
14 //some code
15 for(uint i=0; i< orders[game].length; i++){
16 if (orders[game][i].betPrice == winPrice){
17 orders[game][i].player.transfer(toPlayer);
18 }
19 }
20 }

Sink: i< orders[game].length

Sources:

 msg.sender

 betPrice

 winPrice

 orders[game]<needs validation>

Storage sink: orders[game]

17

eTainter approach: Example

Taint tracking 1 contract PIPOT {
2 struct order {
3 address player;
4 uint betPrice;
5 }
6 mapping (uint => order[]) orders ;
7
8 function buyTicket (uint betPrice) public payable {
9 orders[game].push(order(msg.sender, betPrice));
10 //some code
11 }
12
13 function pickTheWinner(uint winPrice) public {
14 //some code
15 for(uint i=0; i< orders[game].length; i++){
16 if (orders[game][i].betPrice == winPrice){
17 orders[game][i].player.transfer(toPlayer);
18 }
19 }
20 }

Taint written to orders[game] array

Sink: i< orders[game].length

Sources:

 msg.sender

 betPrice

 winPrice

 orders[game]<needs validation>

Storage sink: orders[game]

tainted

18

eTainter approach: Example

Taint tracking 1 contract PIPOT {
2 struct order {
3 address player;
4 uint betPrice;
5 }
6 mapping (uint => order[]) orders ;
7
8 function buyTicket (uint betPrice) public payable {
9 orders[game].push(order(msg.sender, betPrice));
10 //some code
11 }
12
13 function pickTheWinner(uint winPrice) public {
14 //some code
15 for(uint i=0; i< orders[game].length; i++){
16 if (orders[game][i].betPrice == winPrice){
17 orders[game][i].player.transfer(toPlayer);
18 }
19 }
20 }

Taint written to orders[game] array

Sink: i< orders[game].length

Sources:

 msg.sender

 betPrice

 winPrice

 orders[game]<source of taints>

Storage sink: orders[game]

tainted

19

eTainter approach: Example

Taint tracking 1 contract PIPOT {
2 struct order {
3 address player;
4 uint betPrice;
5 }
6 mapping (uint => order[]) orders ;
7
8 function buyTicket (uint betPrice) public payable {
9 orders[game].push(order(msg.sender, betPrice));
10 //some code
11 }
12
13 function pickTheWinner(uint winPrice) public {
14 //some code
15 for(uint i=0; i< orders[game].length; i++){
16 if (orders[game][i].betPrice == winPrice){
17 orders[game][i].player.transfer(toPlayer);
18 }
19 }
20 }

Taint reaches sink (loop exit condition)

Loop is

unbounded

Sink: i< orders[game].length

Sources:

 msg.sender

 betPrice

 winPrice

 orders[game]<source of taints>

Storage sink: orders[game]

tainted

20

● eTainter achieved 92% F1 score compared to 69% for prior work (MadMax)

● Practical analysis time (8 seconds)

● Flagged 2,800 unique contracts on Ethereum as vulnerable

● Flagged 71 contracts of the most frequently used contracts on Ethereum

Findings summary

eTainter artifact:

https://github.com/DependableSystemsLab/eTainter

21

Contributions overview

Gas-related

vulnerabilities

Access control

vulnerabilities

SolidiFI
eTainter AChecker

ISSTA’22
ISSTA’20

Evaluating existing smart contract static

analysis tools

Proposing effective detection approaches

for security vulnerabilities

Effectiveness of the

Evaluated tools

Ongoing

work

22

● Lack of built-in permission-based security model

● Access control implemented in ad-hoc manner

● Results in several access control vulnerabilities

 Weak AC checks

 Unprotected code statements

Smart contracts: Access control

23

AChecker approach: Example

1 contract Wallet{
2 address owner = msg.sender;
3 modifier onlyOwner {
4 require (owner == msg.sender);
5 _;
6 }
7
8 function owner () public {
9 owner = msg.sender;
10 }
11
12 function withdraw(uint256 amount) onlyOwner public{
13 //some code
14 msg.sender.transfer(amount);
15 }
16
17 }

Anyone can write `owner`

Step 1: Data-flow analysis to

identify AC checks

AC data items: owner

Step 2:Taint analysis to detect

AC vulnerabilities

Sinks: owner

tainted

Vulnerability

24

● Compared AChecker with eight static analysis tools

● AChecker outperformed all tools in both recall and precision

● Average analysis time (11 seconds)

● Flagged vulnerabilities in 21 popular real-world contracts with 90% precision

Findings summary

25

Summary

Proposing effective detection approaches

for security vulnerabilities

Gas-related

vulnerabilities

Access control

vulnerabilities

SolidiFI
eTainter AChecker

ISSTA’22 Ongoing

work

ISSTA’20

Asem Ghaleb
Personal website: asemghaleb.com

Email: aghaleb@alumni.ubc.ca

Evaluating existing smart contract static

analysis tools

Effectiveness of the

Evaluated tools

26

● Many vulnerabilities in smart contracts

Developers …

● Have no guarantee that they are finding vulnerabilities by static analyzers

● Have no guarantee that a found vulnerability is a true vulnerability

● May not know which tool they can trust its result more

Analysis Challenges

27

SolidiFI

 Solidity Fault Injector

Bug Locations

Identifier

Bug Injector Tool Evaluator

Parser
Bugs AST

BIP

Buggy

code

BugLog

FNs + FPs

+

Misidentified bugs

source code

28

● Code snippets which lead to vulnerabilities

● Injecting bugs the tools claim to detect

● Playing the role of developers rather attackers

SolidiFI approach: Overview

Code snippet injection 1

Code transformation 2

Security weakening 3

29

● 6 static analysis tools

 (Oyente, Securify, Mythril, Smartcheck, Manticore, Slither)

● 50 Smart Contracts representative of Etherscan

● Injected 9,369 distinct bugs (belong to 7 bug classes)

SolidiFI evaluation

RQ1: False negatives of the evaluated tools?

RQ2: False positives of the evaluated tools?

RQ3: Injected bugs can be activated?

SolidiFI artifact:

https://github.com/DependableSystemsLab/SolidiFI-benchmark

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI

30

MadMaX [OOPSLA, 2018]

● Uses pre-specified code patterns and rules

● Fails to detect variations in the patterns; results in high false-positives

Related work

.decl PossibleArrayIterator(loop: Block, resVar:Variable, arrayId:Value)
// A loop, looping through an array
// Firstly, the loop has to be dynamically bound by some storage var(resVar)
// And this must be the array's size variable.
PossibleArrayIterator(loop, resVar, arrayId) :-
 StorageDynamicBound(loop, resVar),
 PossibleArraySizeVariable(resVar, arrayId).

 for(uint i=0; i< orders[game].length; i++){

MadMax’s rule

Fails on

nested arrays

31

Observation:

● Gas-related vulnerabilities:

 Caused by dependency on user data sources manipulated by users

 Can be discovered by tracking taints without any pre-existing rules

Basic idea

An approach for detecting smart contract gas-related vulnerabilities

using static taint analysis

32

eTainter

 EVM Tainter

CFG

Taint

analysis

Analyze for

protection patterns

Bytecode

Analysis

report

Find

sources + sinks

33

eTainter evaluation

RQ1: Effectiveness of eTainter compared to prior work (MadMax)?

RQ2: Performance of eTainter?

RQ3: Prevalence of gas-related vulnerabilities in the wild?

Dataset Contract Num. Used for

Annotated dataset 28 RQ1

Ethereum dataset 60,612 RQ2 & RQ3

Popular–contracts dataset 3,000 RQ3

eTainter artifact:

https://github.com/DependableSystemsLab/eTainter

34

Ethainter [PLDI, 2020]

● Relies on pre-specified code patterns for access control checks

● Over-approximates access control checks

SPCon [ISSTA, 2022]

● Relies on historical transactions to extract access control rules

 Lack of transactions for several functions

● Assumes transactions are benign and done by authorized users

 Not guaranteed, especially for vulnerable contracts

Related work

35

AChecker

 Access Control Checker

Taint analysis

Analyze for

Intended cases

Identify

AC checks

Find critical

instructions

Bytecode

Warnings

1

2

3

36

Identifying access control checks

 withdraw’s EVM bytecode (SSA form)

1 contract Wallet{
2 address owner = msg.sender;
3 modifier onlyOwner {
4 require (owner == msg.sender);
5 _;
6 }
7
8 function owenr () public {
9 owner =msg.sender;
10 }
11
12 function withdraw(uint256 amount) onlyOwner public{
13 //some code
14 msg.sender.transfer(amount);
15 }
16
17 }

37

eTainter approach: Example

1 uint256 constant howMuchToBecomeOwner = 1000 ether;
2
3 function changeOwner (address _newOwner) payable external {
4 if(msg.value >= howMuchToBecomeOwner) {
5 owner.transfer(msg.value);
6 owner = _newOwner;
7
8 }

!msg.value ≥ howMuchToBecomeOwner ∧ howMuchToBecomeOwner = 1000

Intended bahaviors

38

AChecker evaluation

RQ1: Effectiveness of AChecker compared to prior work?

RQ2: Precise of AChecker to infer intended behaviors?

RQ3: Performance of AChecker?

RQ4: Prevalence of access control vulnerabilities?

Dataset Contract Num. Used for

CVE dataset 15 RQ1

SmartBugs dataset 47,518 RQ1, RQ2,

RQ3 & RQ4

Popular–contracts dataset 3,000 RQ3 & RQ4

