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Ethereum smart contracts 

[1] https://etherscan.io/stat/supply 

[2] https://crypto.news/23-ether-eth-supply-locked-smart-contracts 

Transaction 

Increasing adoption 

● Finance, supply chain, gaming, etc 

● Hold nearly 23% of Ethereum supply (~$161B), as of Sep 2022 [1] [2] 
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● Several attack incidents 

 

 

                                                             

                                            

Security vulnerabilities in smart contracts 

(2016) The DAO 
Attacked: Code Issue 
Leads to $60 Million 
Ether Theft 

(2021) ValueDeFi: 
$10 Million lost 
due to a basic 
mistake by the 
development team 

(2017) Yes, this kid 
really just deleted 
$300 Million by 
messing around 
with Ethereum’s 
smart contracts 

(2022) Found a critical 
bug that could have 
blocked all future 
actions from a 
contract-owning 
governance system. 



4 

Vulnerability example 

1 contract ProfitSharingRewardPool{ 
2  address operator = msg.sender; 
3  bool initialized = false; 
4   modifier onlyOperator { 
5     require (operator == msg.sender); 
6       _; 
7     } 
8   function initialize() public { 
9      require (!initialized); 
10      // omitted code 
11     operator = msg.sender; 
12 
13    } 
14 
15   function governanceRecoverUnsupported external onlyOperator{ 
16      //omitted code  
17    } 
18 
19  }   

initialized = true; 

(2021) ValueDeFi: 
$10 Million lost due 
to a basic mistake by 
the development 
team 
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● Tools with high false-negatives and false-positives 

 

● Our evaluation shows that static tools: 

 Search for predefined syntactic patterns  

   Fail on simple variations  

   Over-approximate 

 Enumerate symbolic traces  

   Sequence of transactions to trigger most vulnerabilities 

   Path explosion and scalability issues 

 

                                                             

                                            

Static analysis tools: current state 
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Thesis goal 

 

 

 

 

Build effective static analysis approaches for detecting 

security vulnerabilities in smart contracts 

 

Evaluating existing smart contract static 

analysis tools 

Proposing effective detection approaches 

for security vulnerabilities 
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Solution insight 

Find generic security properties and use lightweight 

static analysis to find violations of these properties 
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Contributions overview 

 

 

 
Effectiveness of the  

Evaluated tools 
Gas-related 

vulnerabilities 

Access control 

vulnerabilities 

SolidiFI 
ISSTA’20 

eTainter AChecker 
ISSTA’22 

Evaluating existing smart contract static 

analysis tools 

Proposing effective detection approaches 

for security vulnerabilities 

Ongoing 

work 
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Contributions overview 

 

 

 
Gas-related 

vulnerabilities 

Access control 

vulnerabilities 

SolidiFI 
eTainter AChecker 

ISSTA’22 
ISSTA’20 

SolidiFI source code: https://github.com/DependableSystemsLab/SolidiFI 

Evaluating existing smart contract static 

analysis tools 

Proposing effective detection approaches 

for security vulnerabilities 

Effectiveness of the  

Evaluated tools 

Ongoing 

work 

https://github.com/DependableSystemsLab/SolidiFI
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● Code vulnerabilities are still reported frequently  

● No evaluation methodology of static analyzers 
 

 

 

 

● Key Idea: inject bugs into the source code of smart contracts 
 

 

Goal 

 

 

 
A systematic approach for evaluating efficacy of smart contract static 

analysis tools on detecting bugs 
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● All tools have many undetected cases  

● All tools reported false positives  

● Tools with low false negatives reported high false positives 

 

           Analyzers that detect bugs with low false positives are needed 

 

 
 

Findings summary 

SolidiFI artifact:   

https://github.com/DependableSystemsLab/SolidiFI-benchmark 

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
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https://github.com/DependableSystemsLab/eTainter
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● Executing contract costs gas 

● Gas cost for every EVM low-level instruction (opcode) 

● Contract’s users pay the gas cost 

 

   User specifies 

 

 

 

 

Smart contracts: Gas concept 

Function to call 

Max gas user wants to spend on executing the function 

PUSH1 0x64 |3 
SWAP1      |3 
CALLVALUE  |2 
MUL        |5 
PUSH1 0x02 |3 
SLOAD      |100/2100 
PUSH1      |3 
SWAP1      |3 
DUP2       |3 
MSTORE     |X 
PUSH1 0x08 |3 
PUSH1 0x20 |3 
MSTORE     |X 
 

EVM bytecode opcodes 

Gas cost 
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● Dependency on gas can result in vulnerabilities 

● Attackers increase gas cost to force unwanted behavior (e.g., DoS) 

 

 

Gas-related attacks and consequences 

contract 

state 

updated 

state 

Rollback changes 

Out of gas 

Transaction 

Exceeding block gas limit 

Rollback changes 
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eTainter approach: Example 

Taint tracking 

Sink:  i< orders[game].length 

Sources: 

   msg.sender 

   betPrice  

   winPrice 

 

    

 

 

 

 

  

 

1 contract PIPOT { 
2   struct order { 
3     address player; 
4     uint betPrice; 
5    } 
6   mapping (uint => order[]) orders ; 
7 
8   function buyTicket (uint betPrice) public payable { 
9     orders[game].push(order(msg.sender, betPrice)); 
10     //some code 
11    } 
12  
13  function pickTheWinner(uint winPrice) public { 
14     //some code 
15     for(uint i=0; i< orders[game].length; i++){  
16        if (orders[game][i].betPrice == winPrice){ 
17           orders[game][i].player.transfer(toPlayer); 
18          } 
19       } 
20    } 
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eTainter approach: Example 

Taint tracking 1 contract PIPOT { 
2   struct order { 
3     address player; 
4     uint betPrice; 
5    } 
6   mapping (uint => order[]) orders ; 
7 
8   function buyTicket (uint betPrice) public payable { 
9     orders[game].push(order(msg.sender, betPrice)); 
10     //some code 
11    } 
12  
13  function pickTheWinner(uint winPrice) public { 
14     //some code 
15     for(uint i=0; i< orders[game].length; i++){  
16        if (orders[game][i].betPrice == winPrice){ 
17           orders[game][i].player.transfer(toPlayer); 
18          } 
19       } 
20    } 

 
 

Sink:  i< orders[game].length 

Sources: 

   msg.sender 

   betPrice  

   winPrice 

   orders[game]<needs validation> 

 

Storage sink: orders[game] 
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eTainter approach: Example 

Taint tracking 1 contract PIPOT { 
2   struct order { 
3     address player; 
4     uint betPrice; 
5    } 
6   mapping (uint => order[]) orders ; 
7 
8   function buyTicket (uint betPrice) public payable { 
9     orders[game].push(order(msg.sender, betPrice)); 
10     //some code 
11    } 
12  
13  function pickTheWinner(uint winPrice) public { 
14     //some code 
15     for(uint i=0; i< orders[game].length; i++){  
16        if (orders[game][i].betPrice == winPrice){ 
17           orders[game][i].player.transfer(toPlayer); 
18          } 
19       } 
20    } 

 
 

Taint written to orders[game] array 

Sink:  i< orders[game].length 

Sources: 

   msg.sender 

   betPrice  

   winPrice 

   orders[game]<needs validation> 

 

Storage sink: orders[game] 

 

 

    

 

 

 

 

  

tainted 
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eTainter approach: Example 

Taint tracking 1 contract PIPOT { 
2   struct order { 
3     address player; 
4     uint betPrice; 
5    } 
6   mapping (uint => order[]) orders ; 
7 
8   function buyTicket (uint betPrice) public payable { 
9     orders[game].push(order(msg.sender, betPrice)); 
10     //some code 
11    } 
12  
13  function pickTheWinner(uint winPrice) public { 
14     //some code 
15     for(uint i=0; i< orders[game].length; i++){  
16        if (orders[game][i].betPrice == winPrice){ 
17           orders[game][i].player.transfer(toPlayer); 
18          } 
19       } 
20    } 

 
 

Taint written to orders[game] array 

Sink:  i< orders[game].length 

Sources: 

   msg.sender 

   betPrice  

   winPrice 

   orders[game]<source of taints> 

 

Storage sink: orders[game]  

 

 

    

 

 

 

 

  

tainted 
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eTainter approach: Example 

Taint tracking 1 contract PIPOT { 
2   struct order { 
3     address player; 
4     uint betPrice; 
5    } 
6   mapping (uint => order[]) orders ; 
7 
8   function buyTicket (uint betPrice) public payable { 
9     orders[game].push(order(msg.sender, betPrice)); 
10     //some code 
11    } 
12  
13  function pickTheWinner(uint winPrice) public { 
14     //some code 
15     for(uint i=0; i< orders[game].length; i++){  
16        if (orders[game][i].betPrice == winPrice){ 
17           orders[game][i].player.transfer(toPlayer); 
18          } 
19       } 
20    } 

 
 

Taint reaches sink (loop exit condition) 

Loop is 

unbounded 

Sink:  i< orders[game].length 

Sources: 

   msg.sender 

   betPrice  

   winPrice 

   orders[game]<source of taints> 

 

Storage sink: orders[game] 

 

 

    

 

 

 

 

  

tainted 
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● eTainter achieved 92% F1 score compared to 69% for prior work (MadMax) 

● Practical analysis time (8 seconds) 

● Flagged 2,800 unique contracts on Ethereum as vulnerable 

● Flagged 71 contracts of the most frequently used contracts on Ethereum  

 

 

 

 

 
 

Findings summary 

eTainter artifact:    

https://github.com/DependableSystemsLab/eTainter 
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Contributions overview 
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vulnerabilities 
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eTainter AChecker 
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Evaluating existing smart contract static 

analysis tools 

Proposing effective detection approaches 

for security vulnerabilities 

Effectiveness of the  

Evaluated tools 

Ongoing 

work 
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● Lack of built-in permission-based security model 

● Access control implemented in ad-hoc manner 

● Results in several access control vulnerabilities 

 Weak AC checks 

 Unprotected code statements 

 

 

 

 

Smart contracts: Access control 
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AChecker approach: Example 

1 contract Wallet{ 
2   address owner = msg.sender; 
3   modifier onlyOwner { 
4     require (owner == msg.sender); 
5       _; 
6     } 
7    
8   function owner () public { 
9     owner = msg.sender; 
10    } 
11  
12  function withdraw(uint256 amount) onlyOwner public{ 
13    //some code 
14       msg.sender.transfer(amount); 
15    } 
16 
17  } 

 
 

Anyone can write `owner` 

 

Step 1: Data-flow analysis to 

identify AC checks 

 

AC data items: owner 

 

 

Step 2:Taint analysis to detect 

AC vulnerabilities 

 

Sinks: owner 

 

 

 

 

 

tainted 

Vulnerability 
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● Compared AChecker with eight static analysis tools  

● AChecker outperformed all tools in  both recall and precision 

● Average analysis time (11 seconds) 

● Flagged vulnerabilities in 21 popular real-world contracts with 90% precision 

 

 

 

 

 
 

Findings summary 
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Summary 

 

 

 

Proposing effective detection approaches 

for security vulnerabilities 

Gas-related 

vulnerabilities 

Access control 

vulnerabilities 

SolidiFI 
eTainter AChecker 

ISSTA’22 Ongoing 

work 

ISSTA’20 

Asem Ghaleb  
Personal website: asemghaleb.com 

Email: aghaleb@alumni.ubc.ca  

 

Evaluating existing smart contract static 

analysis tools 

Effectiveness of the  

Evaluated tools 



26 

● Many vulnerabilities in smart contracts 

Developers … 

● Have no guarantee that they are finding vulnerabilities by static analyzers 

● Have no guarantee that a found vulnerability is a true vulnerability 

● May not know which tool they can trust its result more 

 

 

Analysis Challenges 
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SolidiFI 

     Solidity Fault Injector 

 

 

 

Bug Locations 

Identifier 

Bug Injector Tool Evaluator 

Parser 
Bugs AST 

BIP 

Buggy 

code 

BugLog 

FNs + FPs 

+ 

Misidentified bugs  

source code 
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● Code snippets which lead to vulnerabilities 

 

 

 

 

● Injecting bugs the tools claim to detect 

● Playing the role of developers rather attackers 
 

 

                                                             

                                            

SolidiFI approach: Overview 

Code snippet injection 1 

Code transformation 2 

Security weakening 3 
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● 6 static analysis tools 

        (Oyente, Securify, Mythril, Smartcheck, Manticore, Slither) 

● 50 Smart Contracts representative of Etherscan 

● Injected 9,369 distinct bugs (belong to 7 bug classes) 
 

 

SolidiFI evaluation 

RQ1: False negatives of the evaluated tools? 

RQ2: False positives of the evaluated tools?  

RQ3: Injected bugs can be activated? 

SolidiFI artifact:   

https://github.com/DependableSystemsLab/SolidiFI-benchmark 

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI
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MadMaX [OOPSLA, 2018]  

● Uses pre-specified code patterns and rules  

● Fails to detect variations in the patterns; results in high false-positives 

 

Related work 

.decl PossibleArrayIterator(loop: Block, resVar:Variable, arrayId:Value) 
// A loop, looping through an array 
// Firstly, the loop has to be dynamically bound by some storage var(resVar) 
// And this must be the array's size variable.         
PossibleArrayIterator(loop, resVar, arrayId) :- 
  StorageDynamicBound(loop, resVar), 
  PossibleArraySizeVariable(resVar, arrayId). 

 for(uint i=0; i< orders[game].length; i++){  

MadMax’s rule 

Fails on 

nested arrays 
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Observation: 

● Gas-related vulnerabilities: 

 Caused by dependency on user data sources manipulated by users 

 Can be discovered by tracking taints without any pre-existing rules 
 

Basic idea 

 

 

 
An approach for detecting smart contract gas-related vulnerabilities 

using static taint analysis 
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eTainter 

     EVM Tainter 

 

CFG  

Taint 

analysis 

Analyze for 

protection patterns 

Bytecode 

Analysis  

report 

Find 

sources + sinks 
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eTainter evaluation 

RQ1: Effectiveness of eTainter compared to prior work (MadMax)? 

RQ2: Performance of eTainter?  

RQ3: Prevalence of gas-related vulnerabilities in the wild? 

Dataset Contract Num. Used for 

Annotated dataset 28 RQ1 

Ethereum dataset 60,612 RQ2 & RQ3 

Popular–contracts dataset 3,000 RQ3 

eTainter artifact:    

https://github.com/DependableSystemsLab/eTainter 
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Ethainter [PLDI, 2020]  

● Relies on pre-specified code patterns for access control checks 

● Over-approximates access control checks 

SPCon [ISSTA, 2022]  

● Relies on historical transactions to extract access control rules 

 Lack of transactions for several functions 

● Assumes transactions are benign and done by authorized users 

 Not guaranteed, especially for vulnerable contracts 

 

 

 

Related work 
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AChecker 

     Access Control Checker 

 

Taint analysis 

Analyze for 

Intended cases 

Identify 

AC checks 

Find critical 

instructions 

Bytecode 

Warnings 

1 

2 

3 
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Identifying  access control checks 

 withdraw’s EVM bytecode (SSA form) 

1 contract Wallet{ 
2   address owner = msg.sender; 
3   modifier onlyOwner { 
4     require (owner == msg.sender); 
5       _; 
6     } 
7    
8   function owenr () public { 
9     owner =msg.sender; 
10    } 
11  
12  function withdraw(uint256 amount) onlyOwner public{ 
13    //some code 
14       msg.sender.transfer(amount); 
15    } 
16 
17  } 
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eTainter approach: Example 

1 uint256 constant howMuchToBecomeOwner = 1000 ether; 
2 
3   function changeOwner (address _newOwner) payable external { 
4     if(msg.value >= howMuchToBecomeOwner) { 
5      owner.transfer(msg.value); 
6      owner = _newOwner;  
7 
8    } 
  

!msg.value ≥ howMuchToBecomeOwner ∧ howMuchToBecomeOwner = 1000 

Intended bahaviors 
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AChecker evaluation 

RQ1: Effectiveness of AChecker compared to prior work? 

RQ2: Precise of AChecker to infer intended behaviors?  

RQ3: Performance of AChecker? 

RQ4: Prevalence of access control vulnerabilities?  

Dataset Contract Num. Used for 

CVE dataset 15 RQ1 

SmartBugs dataset 47,518 RQ1, RQ2, 

RQ3 & RQ4 

Popular–contracts dataset 3,000 RQ3 & RQ4 


