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ABSTRACT
The growth in the popularity of smart contracts has been accompa-
nied by a rise in security attacks targeting smart contracts, which
have led to financial losses of millions of dollars and erosion of trust.
To enable developers discover vulnerabilities in smart contracts,
several static analysis tools have been proposed. However, despite
the numerous bug-finding tools, security vulnerabilities abound in
smart contracts, and developers rely on finding vulnerabilities man-
ually. Our goal in this dissertation study is to expand the space of
security vulnerabilities detection by proposing effective static anal-
ysis approaches for smart contracts. We study the effectiveness of
the existing static analysis tools and propose solutions for security
vulnerabilities detection relying on analyzing the dependency of
the contract code on user inputs that lead to security vulnerabilities.
Our results of evaluating static analysis tools show that existing
static tools for smart contracts have significant false-negatives and
false-positives. Further, the results show that our first vulnerability
detection approach achieves a significant improvement in the effec-
tiveness of detecting vulnerabilities compared to the prior work.
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1 INTRODUCTION
Smart contracts are programs written into blocks running on top of
a blockchain that can receive and execute transactions autonomously.
The growing interest in smart contracts is driven by their decen-
tralized nature that enables secure distributed computations while
eliminating the need for trusted third parties [23]. Smart contracts
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are written in Turing-complete programming languages, such as
Solidity [13], and they are compiled to EVM low-level bytecode
that is deployed to the blockchain. Each smart contract has access
to a persistent storage to store data on the blockchain. Further, the
execution of smart contracts on the Ethereum blockchain consumes
gas paid for by users calling the contract functions.

As smart contracts are written by fallible human developers,
like all software, they may contain bugs leading to vulnerabili-
ties. However, the financial nature of smart contracts increases the
importance of analyzing smart contracts for bugs. In real-world,
Ethereum smart contracts manage accounts holding millions of
dollars, and the most common domain where smart contracts are
used is the decentralized finance (DeFi) [37]. Unfortunately, this
financial nature provides a good incentive for malicious attackers to
exploit vulnerabilities in smart contracts for financial gain [1, 3, 26].
The DAO vulnerability [1], for example, led to $60 million worth
of Ether theft. Another vulnerability in the code of Parity’s wallet
was exploited by an attacker to steal $34 million worth of Ether [3].

Other than the financial losses characterizing vulnerabilities in
smart contracts, the rules imposed by blockchain platforms, e.g.,
Ethereum, for controlling the update and execution of smart con-
tracts increase the risk of vulnerabilities. For instance, transactions
on smart contracts in Ethereum are immutable and cannot be re-
verted, so losses cannot be recovered. Further, it is difficult to update
a smart contract after its deployment on the blockchain.

Several tools have been developed that statically find security vul-
nerabilities in smart contracts [9, 16, 22, 25, 27–29, 33, 34]. However,
vulnerabilities abound in smart contracts [30], and studies [15, 17]
show that existing tools are still in the infancy as they report high
false alarms and fail to detect several vulnerabilities. Further, a re-
cent study [38] found that developers rely on finding bugs in smart
contracts manually, and it is time-consuming to manually identify
bugs. Therefore, there is a compelling need for robust static anal-
ysis tools to help developers find security vulnerabilities in smart
contracts before their deployment.

Having these issues in mind, the overarching goal of this PhD
research is to build robust and scalable static analysis approaches for
detecting security vulnerabilities in smart contracts.

2 PROBLEM DESCRIPTION AND OBJECTIVES
To achieve our goal, this research focuses on: (1) Understanding
the current state of smart contract analysis tools; and (2) Proposing
effective approaches for security vulnerabilities. In the following,
we discuss the addressed research problem and our objectives.

2.1 Evaluating Smart Contract Static Analyzers
Despite the prevalence of smart contract static analysis tools, attack
incidents against smart contracts exploiting code vulnerabilities
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are reported frequently, and new exploits are still being discovered
regularly [6]. This calls into question the efficacy of these tools and
their associated techniques.

Understanding the efficacy of smart contract code analysis tools
allows us to build effective techniques for detecting vulnerabilities
in smart contracts. To the best of our knowledge, there is no sys-
tematic method to evaluate static analysis tools for smart contracts
regarding their effectiveness in finding security vulnerabilities.
Objective: To address this problem, the first objective of this thesis
is to propose a systematic approach for evaluating smart contract
static analysis tools based on bug injection.
Related work: An empirical study by Durieux et al. [15] com-
pared a number of smart contract static analysis tools. However,
the study evaluated the tools using a dataset of example smart
contracts covering limited cases of bugs rather than proposing a
systematic evaluation approach. Bug injection as a testing approach
has been explored considerably in the domain of traditional pro-
grams [8, 14, 31]; however, there have been limited work on bug
injection in the context of smart contracts. In [7], Akca et al. used
bug injection to evaluate the effectiveness of their proposed static
analyzer. However, the approach is limited to injecting a single hard-
coded bug snippet into a pre-defined location in the code. Injecting
a single bug at specific location does not provide a comprehensive
coverage evaluation of static analysis tools, and it does not lead to
generating deep vulnerabilities and corner cases.

2.2 Detecting Security Vulnerabilities
We used our proposed systematic evaluation approach of smart con-
tract static analysis tools to valuate the efficacy of a number of static
analysis tools. By considering the results of our evaluation study
and the research gaps, we focus in this research on the detection of
two broad categories of vulnerabilities in smart contracts, namely,
gas-related vulnerabilities and access control vulnerabilities.

2.2.1 Gas-Related Vulnerabilities. As mentioned above, the execu-
tion of a smart contract requires fees, called gas. The gas is paid
by users upon transaction submission. Running out of gas dur-
ing a transaction’s execution results in exceptions and abortion of
the transaction, thereby leading to unwanted behaviors. Further,
Ethereum imposes an upper bound on the amount of gas spent
to execute transactions (i.e., block gas limit). Therefore, when the
block gas limit is exceeded during the execution of a transaction,
the transaction fails, and its execution gets reverted, i.e., Ethereum
rolls back all changes made before transaction failure. This prevents
functions that exceed the gas block limit from completing success-
fully. The problem gets worse if these functions are responsible for
transferring Ether out of the contract, as this would prevent the
contract owners/users from ever accessing their money (Ether), e.g.,
in the Governmental contract [35], where about $2.5 million worth
of Ether got locked out (freezed).

Smart contracts may contain code patterns that increase execu-
tion cost, causing the contracts to run out of gas or exceed block gas
limit. These patterns can get used by malicious attackers to induce
unwanted behavior in the victim contracts, e.g., Denial-of-Service
(DoS) attacks [36]. We refer to these as gas-related vulnerabilities.

Discovering gas-related vulnerabilities in smart contracts by
developers is not straightforward as the gas cost of a contract is

based on (1) the cost of the bytecode low-level instructions rather
than its source code and (2) the global state of the contract on the
blockchain, i.e., data in the contract storage. There has been little
prior work to find gas-related vulnerabilities in smart contracts [22].
However, these tools use pre-specified code templates and rules,
and are hence brittle as even small variations in the patterns can
make the tools fail, and also result in high false-positives.
Related work: MadMax [22], is the first tool to identify and de-
tect gas-related vulnerabilities. It statically analyzes for gas-related
vulnerabilities through the use of Datalog-based inference rules
to search the intermediate representation (IR) of he bytecode for
gas-related vulnerabilities. However, MadMax mainly searches for
specific vulnerability patterns rather than reasoning on the causes
of the vulnerabilities being detected. Thus, even a slight variation in
the code syntax of the gas-related vulnerabilities would not be cov-
ered by these rules. Further, MadMax coarsely over-approximates
many of the vulnerability cases, thereby resulting in high false-
positives. Other tools, GasReducer [12], GASPER [11] and its ex-
tension, GasChecker [10], focus on optimizing gas consumption in
smart contracts by detecting gas-inefficient code patterns and do
not consider gas-related vulnerabilities.
Objective: Our second objective in this thesis is to propose a detec-
tion approach that targets root causes of gas-related vulnerabilities
without the need for any pre-existing code patterns and rules.

2.2.2 Access Control Vulnerabilities. In smart contracts, developers
rely on access control to manage who can call specific functions
within the contract or execute critical instructions, e.g., withdraw
money, kill the deployed contract. Smart contract developers im-
plement access control checks in an ad-hoc manner employing
different methods, such as using language-special-constructs (e.g.,
function modifiers in Solidity language) or conditional statements.
Failing to implement needed access control properly results in sev-
eral vulnerabilities in smart contracts due to weak and missing
access control- we call these access control vulnerabilities. A known
example is a hack that targeted Parity Wallet and led to locking out
(freezing) about $280M worth of Ether [4]. The attack happened
due to an access control vulnerability that enabled the attacker to
reset the variables used to manage who is authorized to transfer
money out of the contract.
Related work: Current tools that analyze smart contracts for ac-
cess control vulnerabilities are limited to looking for specific pre-
defined access control patterns in the code; hence ignore several vul-
nerabilities and report several false alarms. The work, Ethainter [9],
performs information-flow analysis to detect five access control
vulnerabilities; however, Ethainter searches for predefined access
control patterns in the code, which results in several false-negatives
and false-positives. Other tools [16, 27–29, 33, 34] partially target
the problem and only check for the presence or lack of specific code
patterns of access control before some pre-defined code statements.
Further, these tools do not check for violations of the implemented
access control. Finally, teEther [24] employs symbolic execution to
generate exploits for a set of access-control-similar vulnerabilities;
however, it scales to only a fraction of Ethereum smart contracts [9].
Objective: Our third objective in this thesis is to build an efficient
approach to infer the contract access control to detect access control
vulnerabilities without relying on pre-defined specific code patterns.



Towards Effective Static Analysis Approaches for Security Vulnerabilities in Smart Contracts ASE ’22, October 10–14, 2022, Rochester, MI, USA

3 METHOD
This section describes how we address the discussed research prob-
lems and how we validate our proposed approaches.

3.1 Evaluating Smart Contract Static Analyzers
To achieve our first objective, we propose SolidiFI (Solidity Fault
Injector) [17], a methodology for systematic evaluation of smart
contract static analysis tools to discover potential flaws in the anal-
ysis tools that lead to undetected security bugs and false warnings.
Typically, static analysis tools can have both false-positives and
false-negatives. While false-positives are important, false-negatives
in smart contracts can lead to critical consequences, as exploiting
bugs in contracts usually leads to loss of Ether (money). SolidiFI
performs bug injection to evaluate the false-negatives and false-
positives of smart contract static analysis tools. Our goal is to un-
derstand how effective are static analysis tools in detecting bugs
in smart contracts. To our knowledge, SolidiFI is the first systematic
evaluation approach of smart contract static analysis tools.

Bug injection in the context of smart contracts is a challenging
problem for two reasons. First, smart contracts on Ethereum are
written using the Solidity language, which differs from conventional
programming languages typically targeted by mutation testing
tools [13]. Second, because our goal is to inject security bugs in
different potential locations, and the bugs injected should lead to
exploitable vulnerabilities.

Run tools on 
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Check results for 
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Figure 1: SolidiFI Workflow.

As shown in Figure 1, SolidiFI injects bugs formulated as code
snippets into all possible locations in the smart contract’s source
code written in Solidity (step 1). The code snippets are vulnerable to
specific security vulnerabilities that can be exploited by attackers.
The resulting buggy smart contracts are then analyzed using the
static analysis tools being evaluated (step 2), and the results are
automatically inspected for those injected bugs that are not detected
by each tool - these are the false-negatives of the tools - along with
identifying the other bugs reported as false-positives (step 3). Our
methodology is agnostic of the tool being evaluated.

The security bugs are injected into the source code in three dif-
ferent ways as follows. (1) Full Code Snippet approach in which
we prepare several code snippets for each bug under study, where
each code snippet is a piece of code that introduces the security
bug. (2) Code Transformation approach that aims to transforming
a piece of code without changing its functionality but makes it
vulnerable to a specific bug. In this approach, we leverage known
patterns of vulnerable code to inject this bug. (3)Weakening Secu-
rity Mechanisms approach where we search for existing security

mechanisms implemented in the code and weaken them to make
the code vulnerable to specific security bugs.

3.1.1 Evaluation of SolidiFI. To evaluate our approach, we have
selected six static analysis tools for evaluation, Oyente [25], Se-
curify [34], SmartCheck [33], Mythril [28], Manticore [27], and
Slither [16]. In our experiments, we injected bugs belonging to seven
different bug types that have been exploited in practice [1, 2, 5],
and they are within the detection scope of the selected tools. To
perform our experiments, we used a data set of fifty real-world
smart contracts deployed on Ethereum blockchain.
False-negatives and false-positives of the evaluated tools.The
results of injecting bugs of each bug type and testing them using
the six tools show that a significant number of false-negatives occur
for all the evaluated tools, and that none of the tools was able to
detect all the injected bugs correctly. Further, results show that all
the evaluated tools have reported several false-positives for most of
the bug types. Interestingly, the results show that the tools with
low numbers of false-negatives reported high false-positives. This
raises the question of whether the high detection rate was simply
due to over-zealously reporting bugs by these tools.

To establish a practical understanding of why set of bugs were
not detected, we studied the code snippets for some of the unde-
tected bugs. We found that using pattern matching for detecting
bugs is not an effective way for detecting all smart contract bugs as
several bugs cannot be expressed as specific patterns. Further, bug
detection approaches that are based on enumerating symbolic traces
are impeded by path explosion and scalability issues. Therefore,
there is a need for sophisticated analysis tools that also consider
other aspects of the analyzed code instead of depending only on
analyzing the syntax and symbolic traces. – For more details, please
reference SolidiFI’s paper [17].

3.2 Detecting Gas-Related Vulnerabilities
For our second objective, we propose eTainter (EVM Tainter) [18],
an efficient static analysis-based approach that uses taint tracking
to find gas-related vulnerabilities without using pre-specified rules.
The novel key insight in our work is that the common root cause
of the gas-related vulnerabilities is the gas exceptions triggered
due to the dependency of the contract code on data items either
provided or manipulated by the contract users. We, therefore, for-
mulate the detection of gas-related vulnerabilities as a taint analysis
problem [32] and use static taint tracking to find gas-based vulner-
abilities, without any pre-existing code patterns and rules [18].
Thus, we first define the critical statements in the contract code in
which gas exceptions can cause any of the gas-related vulnerabili-
ties. Then, we use static taint analysis to track the dependency of
these critical statements on user data inputs that cause gas excep-
tions. To the best of our knowledge, eTainter is the first technique to
target gas-related vulnerabilities without requiring pre-specified code
patterns via static taint analysis.

At a high-level, eTainter takes as input the bytecode of the smart
contract being analyzed; it builds the control flow graph (CFG) and
identifies the instructions that introduce user data in the bytecode
(taint sources) and the instructions that can form gas-related vul-
nerabilities (sinks). It then extracts the CFG paths leading to the
defined sinks and performs taint analysis on these paths. Finally,
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eTainter reports the found vulnerabilities to the users, along with
the corresponding vulnerable functions causing the vulnerabilities.

Unlike traditional programs, performing static taint analysis in
smart contracts, particularly in the contract bytecode, is faced with
several challenges. Smart contracts have certain peculiarities (e.g.,
taint propagation via contract’s persistent storage, multiple entry
points, access control) and patterns of use (e.g., use of cryptographic
hash to to reference arrays and mappings stored in the contract
storage). eTainter addresses these challenges to avoid false-positives
and false-negatives – details are discussed in eTainter’s paper [18].

3.2.1 Evaluation of eTainter. We evaluate eTainter first by compar-
ing it with the prior work, MadMax, in terms of its effectiveness in
detecting gas-based vulnerabilities on a dataset having ground truth
of the existing vulnerabilities in the contracts. We use the reported
results to estimate the precision, recall, and F1 score (harmonic
mean of the precision and recall) for both tools.

Second, we use eTainter to perform a large-scale analysis of
60,612 real-world contracts on the Ethereum blockchain to measure
the performance of eTainter and to determine how prevalent are gas-
related vulnerabilities in real-world contracts. We also run eTainter
on the 3000 most popular contracts on Ethereum to determine how
prevalent are gas-related vulnerabilities in widely-used contracts.
Comparison with the prior work. The results of comparing our
approach with the prior work, MadMax, show that eTainter reported
more true-vulnerabilities and less false alarms compared to MadMax.
Overall, eTainter has a precision of 90.4%, a recall of 94%, and an
F1 score of 92.2%. In comparison, MadMax has a precision of 64.9%
and a recall of 74%, which leads to an F1 score of 69.2%.
Performance of eTainter. The analysis results of the 60,612 con-
tracts show that eTainter has an average analysis time of 8 seconds
and a memory consumption of 118MB per contract.
Prevalence of gas-related vulnerabilities. The results indicate
that the addressed vulnerabilities are prevalent in real-world contracts.
eTainter flagged more than 2,834 real-world contracts as having
gas-related vulnerabilities. These contracts are vulnerable to DoS
attacks that can result in blocking the use of the contracts forever.

3.3 Detecting Access Control Vulnerabilities
The main challenges for effectively detecting access control vul-
nerabilities in smart contracts are to (1) accurately identify various
forms of access control checks; and (2) precisely distinguish the
vulnerable access control checks from intended behavior cases –
when unauthorized users can manipulate access control data as
intended behavior, e.g., buying the contract ownership.

To address these challenges, we are working on building an ef-
ficient approach for detecting access control vulnerabilities that
is (1) independent of the various code patterns used to implement
access control checks; and (2) able to differentiate access control
vulnerabilities from intended behavior cases. Our key insight for
identifying access control checks is that access control checks can
get inferred from the semantics of the instructions contributing to
the evaluation of the conditions forming access control checks and
from the data dependencies between the state variables storing ac-
cess control data (used in the conditions) and the contract functions.
Thus, analyzing data flows of conditions in a smart contract can
be used to determine access control checks in the smart contract.

That is, we first use static data-flow analysis to accurately define
access control checks without relying on pre-defined access control
patterns. Then we use static taint analysis to check if unauthorized
users can control the identified access control checks.

To reduce false-positives, we analyze code for cases that are part
of the contract functionality and separate them from vulnerabilities.
We use symbolic execution-based analysis to infer cases where
the contract implements non-access control constraints to control
manipulating access control data and consider them as benign cases
intentionally implemented rather than vulnerabilities.

3.3.1 Evaluation plan. Our initial plan is to evaluate the effective-
ness and performance of the proposed approach by answering the
following research questions:
RQ1.What is the effectiveness of the proposed approach compared
to prior work?
RQ2. What is the performance of the proposed approach?
RQ3. How efficient is the approach to find real vulnerabilities?

To compare the proposed approach with the prior work, we will
use a dataset with a ground truth of the vulnerabilities. Further, we
will study the performance of the approach and how useful it is to
find true vulnerabilities by performing large-scale analysis on the
10,000 most-used contracts deployed on the Ethereum blockchain.

4 EXPECTED CONTRIBUTIONS
The expected main contributions of this research are as follows.

• A systematic evaluationmethodology of smart contract static
analysis tools.

• An inter-procedural static taint-analysis approach for smart
contract bytecode that considers smart contract special con-
cepts such as tracking taints through the contract’s persistent
storage in addition to using domain-specific optimizations
to reduce false-positives.

• A data-flow analysis-based approach for inferring the ac-
cess control checks implemented in smart contracts without
relying on pre-defined code patterns.

• Three automated tools [19, 21], built in this research, and
several benchmarks [20, 21] that are publicly available to be
used by future studies.

5 CONCLUSION AND FUTURE RESEARCH
This thesis aims to help the development of secure smart contracts.
We propose a methodology for systematically evaluating static
analysis tools based on bug injection. Further, we propose two static
analysis approaches for detecting gas-related vulnerabilities and
access control vulnerabilities, based on studying the dependency
of the contract code on user inputs causing these vulnerabilities.

As future work, we plan to expand our work to involve cross-
contract (inter-contract) static analysis approaches. This will help
improve the analysis effectiveness of contracts relying on the code
of other smart contracts, e.g., for code reusability.
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