How Effective Are Smart Contract Analysis
ools? Evaluating Smart Contract Analysis
Tools using Bug Injection

Asem Ghaleb and Karthik Pattabiraman

July 22nd, 2020

Smart contracts

LN

1
118
—)

|
A

Motivation: Smart contracts

e Cannot be updated
e Transactions are immutable

e Financial nature (incentive for attackers)

d s s

(2016) The DAO (2017) Yes, this kid (2019) Ethereum
Attacked: Code really just deleted Classic's '51%
Issue Leads to $60 $300 MILLION by Attack,' $1 Million
Million Ether Theft messing around Loss, Raise

with Ethereum’s Concerns About

| smart contracts Securit |
~ ~ * 3

Our goal

Oyente [HSEIRAY] wores., siraen

® Code vulnerabilities are still reported frequently [1]

e No evaluation methodology of static analyzers

A systemetic approach for evaluating efficacy of smart contract static
analysis tools on detecting bugs

[1] S. Hwang and S. Ryu. 2020. Gap between Theory and Practice : An Empirical Study of Security Patches in Solidity. 2020. In
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE).

Contributions

e Systematic approach:

e Evaluated 6 static analyzers

e Analysis of the analyzers’ false negatives and false positives

Tools failed to detect several bugs and reported high false positives

Research challenges

e Solidity; different from traditional languages
e Injecting bugs into all potential locations

e |njecting exploitable vulnerabilities

Bug model

e Code snippets which lead to vulnerabilities
e Injecting bugs claimed to be detected
e Playing the role of developers rather attackers

e Injecting distinct bugs as possible

if (startTime+5 == block.timestamp)
{ //code }

uint vtime = block.timestamp;
if (startTime+5 == vtime)
{ //code }

Bug injection

SolidiFI works on AST-level of the source code

3+ contract MyWallet {

4

5 address owner;

[mapping(address => uint256) balances;

ri
i) constructor () public {

9 owner = msg.sender;

10 }

11

function sendTo(address payable receiver, uint8 amount) public

13 - { .
— reguire(msg.sender== owner); Code transformation
— (bool success) = receiver.send(amount);

16 if(!success) Security weakening
/| revert();

T8 T
e,

20 function bug_reEntrancy (uint256 Amt) public {

21 require({balances [msg.sender] »>= _Amt);

22 (I:uc-c:l} success,) = msg.sender.call.value(Amt)(""); code snippet injection

23 require(success);

24 balances [msg.sender] -= _Amt ;

25 1

75T

Ethereum Smart Contract Best Practices: https://consensys.github.io/smart-contract-best-practices

SolidiFI evaluation
e 6 static analysis tools
(Oyente, Securify, Mythril, Smartcheck, Manticore, Slither)

e 50 Smart Contracts representative of Etherscan (39-741 loc) ~ Most Etherscan
contracts size <1000 loc

e Different functionalities and syntactic elements

RQ1: False negatives of the evaluated tools?
RQ2: False positives of the evaluated tools?

RQ3: Injected bugs can be activated?

Experimental setup

e 7 common bug classes
considered by the tools

e 9,369 distinct bugs

e Timeout: 15 minutes per
smart contract

4
(&S]
2 ¢
e
c|l 5|l 5|=s|9
> o = T [=
Olw|=2|wn|=|n
Re-entrancy * *x *x Xx x %
Timestamp dependency * * * *
Unchecked send * %
Unhandled exceptions * x x % *
TOD * *x
Integer over/underflow * * X *x
Use of tx.origin * * *

10

RQ1: False negatives of the evaluated tools

Not supported by the tool Undetected bugs 100% detection
R A
o
3 R
= =
Toe\ 2 RIS € s
- +
g g = | § e = e None of the tools
@ =
Security bug & o 0 = n = n
1008 232 1085 1343 1250 deteCt a” bugs
Re-entrancy 1343 | (844) \(232) (805) | (106) | (1108)
381 1§ 8T0 [902 e Many undetected
Timestamp dependency | 1381 | (886) 4NL)A9 (iég) (341) NA corner cases
Unchecked send 1266 | NA (449) | (389) | NA NA o o))
1052 673 | 756 | 1325 157 e Misidentification is
Unhandled exceptions | 1374 | (918) | (571) | (756) | (1170) | NA | (128) .
199 | 263 high as well
TOD 1336 | (1199) | (263) | NA | NA | NA | NA
398 106Y 1072 1196
Integer over/underflow | 1333 | (898) | NA | (932) | (1072) | (1127) | NA
445 1239
Use of tx.origin 1336 | NA NA | (445) | (1120) NA

11

Misidentification of bugs: Example

Reported as TOD bug

name ;
> uint) balances_re_ent38;

withdrawFunds re ent38 (uint256 weiToWithdraw) H

reguire{balances re ent3&[.sender] »= weiToWithdraw);

Injected Reentrancy bug

require(.sender.send({ weiToWithdraw));
balances_re_ent38] .sender] -= _weiToWithdraw;

decimals;

Buggy contract

Oyente Scan report

12

RQ2: False positives of the evaluated tools

Challenges:
e Lack of ground truth

e Large number of bugs

Approach:

Assuming a bug reported by the majority of the tools cannot be false positive
Reported 100 Filtered 40 - Manually 20 Indeed 16
Reentrancy inspected - FPs 80%

bR;Fr)r?z;}g(rjity o0 FPs = Filtered X Indeed FPs
FPs = 40 X 80% = 32

Risk: There might be false positives reported by the majority
13

False positive results

e All tools reported false positives (2 to 801)
e High false positives for tools with low false negatives (e.g., Slither)

e Some cases are truly bizarre

No integer

string public symbol = "CRE";

variables or
Calculations

Reported as

integer overflow

14

RQ3: Activating the undetected bugs
Goal: Checking exploitability of the undetected bugs

e Selected 5 undetected bugs for each bug type
e All bugs were exploitable

e No much effort to exploit bugs (within minutes)

Ethereum
Network

Python JSON RPC
Client N\

<eoe,ue1U|

Threats to validity

e External:

e 50 smart contracts

e Internal:
e Evaluating 6 tools

e 7 bug types

e Results measurement:
e Unexploitable bugs in practice

e True bugs counted as false positives

16

Summary

Goal: A systematic approach for evaluating static analyzers

e Introduced SolidiFl, for evaluating smart contract static analyzers
e Static analyzers suffer high false-negatives and false-positives

e Analyzers that with are needed

Source code: https://github.com/DependableSystemsLab/SolidiF|
Artifact: https://github.com/DependableSystemsl ab/SolidiFl-benchmark

Asem Ghaleb, PhD Candidate at University of British Columbia
aghaleb@ece.ubc.ca

17

https://github.com/DependableSystemsLab/SolidiFI
https://github.com/DependableSystemsLab/SolidiFI-benchmark
https://github.com/DependableSystemsLab/SolidiFI-benchmark
https://github.com/DependableSystemsLab/SolidiFI-benchmark

