
eTainter: Detecting Gas-Related Vulnerabilities in Smart
Contracts

Asem Ghaleb
University of British Columbia

Vancouver, Canada
aghaleb@alumni.ubc.ca

Julia Rubin
University of British Columbia

Vancouver, Canada
mjulia@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, Canada
karthikp@ece.ubc.ca

ABSTRACT

The execution of smart contracts on the Ethereum blockchain con-

sumes gas paid for by users submitting contracts’ invocation re-

quests. A contract execution proceeds as long as the users dedicate

enough gas, within the limit set by Ethereum. If insufficient gas is

provided, the contract execution halts and changes made during

execution get reverted. Unfortunately, contracts may contain code

patterns that increase execution cost, causing the contracts to run

out of gas. These patterns can be manipulated by malicious attack-

ers to induce unwanted behavior in the targeted victim contracts,

e.g., Denial-of-Service (DoS) attacks. We call these gas-related vul-

nerabilities. We propose eTainter, a static analyzer for detecting

gas-related vulnerabilities based on taint tracking in the bytecode

of smart contracts. We evaluate eTainter by comparing it with the

prior work, MadMax, on a dataset of annotated contracts. The re-

sults show that eTainter outperforms MadMax in both precision

and recall, and that eTainter has a precision of 90% based on manual

inspection. We also use eTainter to perform large-scale analysis of

60,612 real-world contracts on the Ethereum blockchain. We find

that gas-related vulnerabilities exist in 2,763 of these contracts, and

that eTainter analyzes a contract in eight seconds, on average.

CCS CONCEPTS

· Security and privacy→ Software and application security;

KEYWORDS

Ethereum, Solidity, security, taint analysis

ACM Reference Format:

Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2022. eTainter: De-

tecting Gas-Related Vulnerabilities in Smart Contracts. In Proceedings of

the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’22), July 18ś22, 2022, Virtual, South Korea. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3533767.3534378

1 INTRODUCTION

Smart contracts supported by the Ethereum blockchain have wit-

nessed a dramatic rise in interest. Similar to traditional programs,

smart contracts are defined by a set of functions, each consisting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534378

of a sequence of instructions. The contract’s functions are invoked

through calls called transactions. Ethereum smart contracts are writ-

ten using high-level programming languages (e.g., Solidity) [12],

and compiled to Ethereum Virtual Machine (EVM) bytecode that is

deployed and stored in the blockchain accounts [37].

The execution of a smart contract requires fees, called gas, paid

by the user who submits the transaction to execute the contract.

The gas is paid by users upon transaction submission. Running out

of gas during a transaction’s execution results in exceptions and

abortion of the transaction, thereby leading to unwanted behaviors.

Further, Ethereum imposes an upper bound on the amount of gas

spent to execute transactions in each block (i.e., block gas limit).

Therefore, when the block gas limit is exceeded during the execu-

tion of a transaction within a block, the transaction fails, and its

execution gets reverted (i.e., Ethereum rolls back all changes made

before transaction failure). This prevents functions that exceed the

gas block limit from completing successfully. The problem gets

worse if these functions are responsible for transferring Ether out

of the contract, as this would prevent the contract owners/users

from ever accessing their money (Ether), e.g., in the Governmental

contract [31], where $2.5 million worth of Ether got locked out.

Smart contracts may contain vulnerable code patterns that can

be exploited by malicious users to force contracts to run out of

gas [33]. We refer to these as gas-related vulnerabilities. Discovering

gas-related vulnerabilities in smart contracts by developers is not

straightforward as the gas cost of a contract is based on (1) the cost

of the EVM low-level instructions rather than its source code, and

(2) the global state of the contract, i.e., data in the contract storage.

A recent study [39] found that it is time-consuming to manually

identify gas-related vulnerabilities in smart contracts. Further, once

a smart contract is deployed, it is difficult to modify it. Therefore,

we need automated tools to analyze smart contracts for gas-related

vulnerabilities before deployment on the blockchain.

There has been little prior work to find gas-related vulnerabili-

ties in smart contracts. Grech et al. proposed a tool called MadMax

that statically analyzes smart contracts for gas-related vulnerabili-

ties [17]. Other work [3, 5] has focused on finding inefficient gas

code patterns rather than vulnerabilities. However, these tools use

pre-specified code templates and rules, and are hence brittle as even

small variations in the patterns can make the tools fail, and also

result in high false-positives (as we show later in the paper).

We propose an efficient static-analysis-based approach, eTainter

(EVM Tainter), to find gas-related vulnerabilities in smart contracts.

Our main insight is that gas-related vulnerabilities are caused by the

dependency of contract code on data items that are either provided

or manipulated by the contract users. We formulate the detection of

gas-related vulnerabilities as a taint analysis problem [25]. We then

use static taint tracking to find gas-based vulnerabilities, without

728

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3533767.3534378
https://doi.org/10.1145/3533767.3534378


ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

any pre-existing code patterns and rules. The main challenge in

static taint analysis for smart contracts is that contracts have certain

peculiarities (e.g., taint propagation via contract’s storage, multiple

entry points, access control), as well as patterns of use (e.g., loops

for processing strings and bytes), which must be taken into account

to avoid false-positive and false-negative results.

To the best of our knowledge, eTainter is the first technique to

target gas-related vulnerabilities without requiring pre-specified code

patterns, via static taint analysis. Our contributions are as follows.

1. Proposing an inter-procedural static taint-analysis approach

for detecting multiple classes of gas-related vulnerabilities, eTainter,

which tracks taints through the contract’s persistent storage and the

flow of taints from the contract’s multiple entry points, in addition

to using domain-specific optimizations to reduce false-positives.

2. Implementing the proposed approach as an automated tool that

works on the smart contract’s EVM bytecode. Our implementation

is publicly available at [16].

3. Evaluating the efficacy of eTainter on a custom dataset of 28

smart contracts with hand-annotated gas-related vulnerabilities; a

set of 60,612 unique smart contracts deployed on Ethereum; and a

set of the 3,000 most frequently used contracts in Ethereum.

The results of evaluating eTainter show that eTainter is able to

find gas-related vulnerabilities with a precision and recall of over

90%. Our comparison with the prior work, MadMax, shows an F1

score of 92% for eTainter compared with 69% for MadMax for the

same set of contracts, with both precision and recall being higher for

eTainter. Further, eTainter has an analysis time of about 8 seconds on

average per smart contract, and it analyzed successfully 88% of the

Ethereum contracts without timing out; 97% of these contracts were

analyzed within one minute each by eTainter. Finally, we find that

gas-related vulnerabilities are present in about 5% of the contracts in

Ethereum, and in about 2.5% of the most frequently-used contracts.

2 BACKGROUND AND RELATED WORK

2.1 Ethereum Smart Contracts

Ethereum is a distributed computing platform running programs

called smart contracts. Smart contracts run in a stack-based Ethereum

virtual machine (EVM), which maintains a stack of 256-bit words.

Further, in EVM, each contract has access to persistent private a

key-value storage of 256-bit keys and 256-bit values, in which data

is maintained over multiple executions. We refer to each key-value

field in the storage as a storage slot. The smart contract also has

access to volatile memory that is initialized at the beginning of each

execution. The EVM bytecode deployed on the blockchain gets ex-

ecuted through transactions upon user requests. The bytecode is

executed by miners, which are a network of mutually untrusted

nodes, and governed by the consensus protocol of the Ethereum

blockchain. Miners receive execution fees called gas for running a

transaction, paid by the submitting user.

2.2 EVM Bytecode

Unlike traditional programs that have amain entry point, EVM byte-

code starts with a function selector, which provides EVM bytecode

with multiple entry points. The function selector is like an entry

gate for the contract and routes execution to the called external or

public function based on matching the static signature of the called

function. When calling a contract, if the provided function signa-

ture does not match any of the contract’s public/external functions,

the execution is directed to the fallback function, if any (defined as

function()). This function is typically used for receiving Ether.

In EVMbytecode, instructions work on data from either the stack,

memory, or storage. As the EVM is stack-based, each instruction

in the bytecode that takes arguments, pops its arguments from

the stack (except for the PUSH instructions that take immediate

arguments). In addition to the stack, EVM uses memory as an input

and output buffer for a few instructions, such as SHA3 that computes

the keccak256 hash of data in memory and pushes the result to the

stack, where the memory start location and size are read from the

stack. Further, EVM uses two instructions (SLOAD and SSTORE) for

managing persistent data in the contract storage. Both instructions

get the corresponding storage addresses from the stack, and SLOAD

pushes the loaded data to the stack.

EVM also has instructions for managing data in memory (MLOAD

and MSTORE), querying blockchain state (e.g., TIMESTASMP), writing

events to the blockchain (e.g., LOG1), and obtaining execution en-

vironment information (e.g., the caller of the contract (CALLER)).

Further, EVM involves a set of arithmetic (e.g., ADD, MUL) and logic

(e.g., GT, EQ) instructions, control transfer instructions (e.g., condi-

tional jump (JUMPI)), other contracts’ call instructions (e.g., CALL),

and instructions that end the execution (e.g., STOP) or revert changes

made to the contract state during execution (REVERT). EVM does

not have method invocation and return instructions to perform

intra-contract function calls. Instead, the EVM pushes the return

address to the stack and performs a direct jump to the target address

of the method in the bytecode.

2.3 Taint Analysis

Taint analysis is used in information-flow based security to determine

if there is a data-flow from low-integrity data (i.e., sources) to high-

integrity data (i.e., sinks) [25]. The sources are typically data that can

be manipulated by the user (e.g., user input data) and the sinks are

typically security-sensitive operations (e.g., writing to a database).

A flow of data from sources to sinks represents a vulnerability.

There are generally two forms of tainting: (1) explicit, and (2) im-

plicit. Explicit tainting considers only direct data-flow from sources

to sinks, without considering control-flow. Implicit tainting also

considers indirect tainting via control-flow and is needed for sound

analysis. However, tracking implicit taints is typically more expen-

sive and hence most tainting techniques perform explicit tainting.

Finally, taint analysis can be performed either statically or dy-

namically. Static taint analysis techniques may be imprecise (i.e.,

has false-positives), but are typically sound (i.e., cover all potential

taint flows in the program and hence have no false-negatives). Dy-

namic taint analysis typically is precise (i.e., has no false positives),

but its coverage is limited by the inputs provided for executing the

program, making it unsound (i.e., has false negatives).

2.4 Related Static Analysis Tools

There has been limited prior work on finding gas-related vulnerabil-

ities in smart contracts. One of the first tools to identify gas-related

vulnerabilities, MadMax [17], statically analyzes smart contracts

for three types of vulnerabilities: (1) unbounded loops, (2) DoS with

729



eTainter: Detecting Gas-Related Vulnerabilities in Smart Contracts ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Failed Call (wallet griefing), and (3) Induction Variable overflows.

MadMax constructs an intermediate representation (IR) from the

EVM bytecode of the contract, and uses Datalog-based inference

rules for extracting contract properties. However, MadMax has

three drawbacks. First, it mainly searches for specific vulnerability

patterns rather that reasoning on the causes of the vulnerabilities

being detected. Thus, even a slight variation in the code syntax of

the gas-related vulnerabilities would not be covered by these rules

(Section 3). Second, MadMax coarsely over-approximates many

of the vulnerability cases, e.g., considering a loop that references

the size of any storage array in its condition as an unbounded

loop. This over-approximation results in high false positives (Sec-

tion 7.2). Finally, MadMax only partially models the contract’s stor-

age and memory, and hence overlooks vulnerabilities that depend

on memory data items and storage complex structures, leading to

false-negatives.

GasReducer [5] is a static analysis tool that performs bytecode

optimization by finding unoptimized sequences of EVM instructions

and replacing them with optimized sequences. GASPER [4], and its

extension GasChecker [3], focus on optimizing gas consumption

in smart contracts by detecting gas-inefficient code patterns. How-

ever, these tools do not consider gas-related vulnerabilities, and are

limited to dead code elimination and simple loop optimizations.

There has been a vast body of work on statically analyzing smart

contracts for other classes of security bugs than gas-related vulnera-

bilities [21], [19], [23], [38], [22], [29], [30] , [2], [27]. Many of these

techniques use symbolic execution. As a result, they suffer from

the path explosion problem, which makes them unable to explore

all transaction sequences [11, 28]. Unfortunately, the detection of

gas-related vulnerabilities often requires a complex sequence of

transactions to reach the vulnerable state.

GasFuzzer [1] uses fuzzing to generate inputs for smart contracts,

and create transactions leading to high gas consumption values. It

then analyzes the execution logs for exception disorder vulnerabili-

ties (unhandled exceptions including those caused by insufficient

gas). However, GasFuzzer fuzzes individual functions in the smart

contracts through single transactions, and many gas-related vul-

nerabilities only arise when calling multiple functions.

Finally, taint analysis has been used by some tools for finding

bugs in smart contracts. However, none of the taint analysis tools

consider gas-related issues. Osiris [29] uses static taint analysis

to validate arithmetic bugs detected through symbolic execution.

Its taint analysis is built on top of symbolic execution and per-

formed on the instructions of the counter examples generated by

the symbolic execution, which makes its approach insufficient for

detecting gas-related issues as the taint propagation will be limited

to the generated counter examples. Sereum [24] uses dynamic taint

tracking to protect against Reentrancy attacks by extending the

Ethereum client to perform runtime monitoring. However, like all

dynamic analysis techniques, this approach has the drawback of

finding only the vulnerabilities that are exercised by the provided

inputs. Ethainter [2] uses Datalog rules to perform information flow

analysis to detect composite vulnerabilities. Unlike eTainter, which

works on tracking taints in EVM bytecode, Ethainter designed an

abstract input language to capture information flow semantics in

smart contracts, customized to detect composite vulnerabilities.

A recent paper, SMARTIAN [6], uses fuzzing guided by dy-

namic and static dataflow analyses to detect a set of smart contract

bugs. SMARTIAN performs dynamic dataflow analysis to guide the

fuzzing engine and to implement bug oracles. The use of static taint

analysis by SMARTIAN is limited to initial seed construction, to

find the set of functions in the contract that include sender-checker

routines. Further, SMARTIAN does not target gas-related bugs,

and extending SMARTIAN to accurately detect gas-related bugs

would be challenging. Dynamically detecting unbounded loops, for

instance, requires executing a massive number of transactions to

reach the vulnerable state and trigger the bug.

3 MOTIVATING EXAMPLE

We use a real-world contract deployed on the Ethereum blockchain

to illustrate the challenges of finding gas-related vulnerabilities.

We also use this as a running example in Section 4 and Section 5.

1 contract PIPOT {

2 uint public fee = 20;

3 mapping(uint => uint) jackpot;

4 struct order{

5 address player;

6 uint betPrice ;}

7 mapping(uint => order []) orders;

8
9 function buyTicket(uint betPrice)public payable{

10 orders[game].push(order(msg.sender , betPrice));

11 uint distribute = msg.value * fee / 100;

12 jackpot[game] += (msg.value - distribute);

13 }

14 function start(uint winPrice)public onlyOwner (){

15 if (orders[game]. length > 0) {

16 pickTheWinner(winPrice);}

17 startGame ();

18 }

19 function pickTheWinner(uint winPrice) internal {

20 uint toPlayer = jackpot[game]/ orders[game]. length;

21 for(uint i=0; i<orders[game]. length;i++){

22 if (orders[game][i]. betPrice == winPrice){

23 orders[game][i]. player.transfer(toPlayer);}

24 }

25 }

Figure 1: Example of smart contract with two classes of gas-

related vulnerabilities.

The code in Figure 1 is simplified from the PIPOT contract on

Etherscan [10], an explorer for Ethereum. Due to space constraints,

we show only the relevant parts of the code. The contract imple-

ments a lottery/gamewhere the users of the contract can participate

in the game by buying tickets and guessing a bet price. The winners

of the game are the participants who correctly guess the bet price

specified by the owner of the contract. Users can participate in

the game by calling the function buyTicket at line 9. The function

buyTicket stores the address of each participant and the bet price

in the mapping orders (line 10), which is a data structure in Solidity

similar to a hash table. It also deducts 20% of the bet price as a fee

and adds the remaining 80% to the mapping jackpot (lines 11-12).

The owner of the contract can start a new game by calling the

function start (line 14), and specifying the winning price for the

current active game (parameter winPrice). The current game will be

deactivated when the owner starts a new game, and this leads to the

pickTheWinner function (line 19) getting called by the start function

730



ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

(line 16). The pickTheWinner function distributes the jackpot evenly

to the winners of the game, which are the participants who correctly

guessed the bet price picked by the owner of the contract.

The pickTheWinner function sends the jackpot share to each

winner by iterating through the mapping orders in a for-loop (line

21), which has vulnerabilities of different classes: (1) unbounded

loop and (2) DoS with Failed Call. The first vulnerability is that the

loop is iterating through the dynamic mapping orders that grows

over time. When a large number of players participate in the game,

the loop fails, as the cost of executing the loop exceeds the block

gas limit, and none of the winners will receive the prize money.

This also locks out the jackpot money in the contract forever as

there are no other functions in the contract to transfer the money

out. The second vulnerability is that the function pickTheWinner

is sending money for the winners within the loop. If one of the

winners refuses the money or fails to receive it by throwing an

exception, the whole loop will fail, and none of the winners will

receive the jackpot. The jackpot money gets locked out in the

contract forever. Both vulnerabilities have serious consequences, as

they destroy the promise of the game and the trust in the contract.

When we analyzed this contract with the MadMax tool [13], we

found that it failed to detect either of the vulnerabilities (though

both vulnerabilities are within the scope of MadMax’s detection

capabilities). To understand why, we looked into the source code

of MadMax (available on Github). We found that to check for un-

bounded loops, MadMax checks if a loop iterates through an array,

bounded by the array’s size variable (e.g., a.length). In other words,

MadMax checks if any of the variables used in the loop represents

the array’s size. Concretely, in EVM, the first element of a storage

array is used to store the length of the array, and it is located at a

constant address in the contract’s storage. This constant address is

used in the bytecode to calculate the addresses of the array elements

using a SHA3 hash instruction. Therefore, MadMax detects that a

variable used in the loop’s condition represents the array’s size, if

and only if the variable is used in an SHA3 instruction. Similarly,

to check for DoS with failed call, MadMax checks if the address of

a call within a loop is an array element. To do so, it checks if the

element is part of an array whose size is used in SHA3 instruction.

Unfortunately, these rules does not work for nested structures (e.g.,

multi-dimensional arrays) such as the one in this example. This

is because the address of the variable used to store the length of

a nested structure is a hash address that is resolved at run-time,

rather than a constant address. Therefore, the pre-specified rules in

MadMax are unable to reason about the structure used in the loop,

and hence MadMax does not detect these vulnerabilities.

This example illustrates the challenge of using pre-specified rules

to identify gas-related vulnerabilities (as done by MadMax). Even if

the rules are modified to handle this particular case, there are many

other variations that are difficult to express as pre-specified rules.

4 GAS-RELATED VULNERABILITIES AND
DETECTION VIA TAINT ANALYSIS

eTainter uses taint tracking to find gas-related vulnerabilities with-

out using predefined rules. In what follows, we discuss the taint

sources in our analysis, describe each vulnerability, and then explain

how taint analysis can detect it.

4.1 Taint Sources

In our analysis, the taint sources are the EVM instructions that

introduce user data. These instructions read either the arguments

of the invoked contract’s function or the transaction-related data

(e.g., sender and Ether value).

The first row of Table 1 shows the EVM instructions that are

defined as taint sources. The EVM instructions CALLDATALOAD and

CALLDATACOPY read data passed as arguments when calling a con-

tract’s function, CALLER and ORIGIN return the sender and the

origin of the transaction, respectively, and CALLVALUE returns the

Ether value of the transaction. In our running example, the pa-

rameter betPrice (line 9) of the function buyTicket is read by the

EVM instruction CALLDATALOAD in the bytecode. The global built-in

variable msg.sender (used in line 10) corresponds to the EVM in-

struction CALLER, which returns the address of the contract’s caller

(transaction sender) in the bytecode.

Further, in the bytecode, the EVM instruction, SLOAD, loads data

from the contract’s storage. In line 21 of our running example,

the length of the array read by orders[game].length is loaded from

the storage, and this pattern is translated to SLOAD instruction in

the bytecode. Our analysis initially considers the data read from

a storage slot as a tainted data; thus, the EVM instruction SLOAD

is defined as a source of taints. However, because not all data in

the storage is actually controlled by the user, our analysis performs

further checks to validate if storage sources are controlled by the

contract users as we discuss in Section 6.1.

4.2 Gas-Related Vulnerabilities

We follow the definition of gas-related vulnerabilities from prior

work, MadMax [17], excluding the Induction Variable Overflow

vulnerability class since the issue causing this vulnerability (casting

induction variables) is statically detected by newer versions of the

Solidity compiler [18]. Below, we define the remaining vulnerability

classes and cast each as an instance of the taint analysis problem.

4.2.1 Unbounded Loops. This class of vulnerabilities occurs when a

loop iteration is determined based on user input. The most common

form of this vulnerability are loops that iterate through a dynamic

data structure (e.g., array, mapping) that grow over time, and can

be manipulated by the contract’s users [8, 35], as in line 21 of the

example in Figure 1.

Another example of this vulnerability class are implicit loops gen-

erated due to Solidity’s programming patterns. Such loops iterate

over all items of dynamic arrays, e.g., the code pattern łarrayName

= new dataType[](0)ž used by developers to clear arrays. Such code

pattern, łcreditorAddresses = new address[](0);ž from the GovernMen-

tal contract, was behind the vulnerability responsible for locking

out about 1100 Ether (worth about $2.5 million) [31].

The code above compiles to a loop that iterates over the elements

of the array creditorAddresses and sets them to zero, effectively delet-

ing them, as shown by the following pseudocode: foreach 𝑎 ∈ array

𝐴 do 𝑎 ← 0; When the number of creditors in creditorAddresses

is large, the gas cost of executing the loop exceeded the block gas

limit. This resulted in the execution of the enclosing function being

reverted and prevented it from doing its job.

731



eTainter: Detecting Gas-Related Vulnerabilities in Smart Contracts ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Table 1: EVM instructions defined as sources and sinks by eTainter. NA = Not applicable (i.e., No constraints).

Type EVM Instruction(s) Additional Constraints

Sources CALLDATALOAD, CALLDATACOPY, CALLER, ORIGIN, CALLVALUE, SLOAD NA
Sink CALL < gas, addr, value, dataOffset, dataLength> (1) CALL is in a loop’s body, and (2) The CALL’s return is the condition of a revert
Sink JUMPI <destination, condition> NA
Sink ISZERO <value> NA
Sink SSTORE < key, value> NA

Detection: Taint analysis can find that a loop is unbounded by

defining the condition of the loop as a sink and then checking

if the tainting sources (data loaded from storage slots written or

manipulated by contract users) reach the defined sink. For the

example in Figure 1, taint analysis checks if contract users can

change the length of the array orders[game] used as a bound in the

loop (line 21). The condition in this loop (𝑖 < 𝑜𝑟𝑑𝑒𝑟𝑠 [𝑔𝑎𝑚𝑒] .𝑙𝑒𝑛𝑔𝑡ℎ)

is the sink, and msg.sender is the source. Taint analysis finds data

flows in the buyTicket function (line 10) in which the taint source

reaches the array orders[], causing an increase in the array size.

Loops that iterate over user inputs (e.g., function parameters) are

commonly used, and reporting all these loops would result in high

false-positives. Therefore, our analysis only detects the loops that

can result in a Denial of Service (DoS) due to being bound by storage

data items.

In our analysis, sinks in the EVM bytecode are defined by first

locating the basic blocks forming loops’ exit conditions. Then the

arguments of the logical instructions (e.g., ISZERO) along with the

condition arguments of conditional jump instructions (e.g., JUMPI),

used to direct execution of the loop, are defined as sinks. The con-

dition in the example (i< orders[game].length) forms a basic block

with the last instruction as JUMPI <destination, condition>

that directs the execution to the loop body. The condition argument

of the JUMPI instruction is defined as a sink.

4.2.2 DoS with Failed Call. This vulnerability occurs when exter-

nal calls are performed in the body of a loop (e.g., to pay users by

sending Ether to several addresses) [36]. In smart contracts, it is not

advisable to group external calls in a single transaction, i.e., within

a loop, and calls should rather be isolated to their own transaction,

e.g., each user should withdraw their own Ether. That is because

the common practice is to check that each call succeeds, and re-

vert the execution if not. When grouping transactions, if one of

the target call recipients has an error (e.g., with a gas-expensive

fallback function), the failed call throws an exception, the whole

execution gets reverted, and the loop never completes (i.e., no one

gets paid). The loop in Figure 1 (line 21) has this vulnerability as

transfer (line 23) is designed to revert on failures, which an attacker

can exploit if they are able to make a malicious contract (e.g., one

with an expensive fallback function in terms of gas) a target of the

external call executed in the loop’s body.

Detection: Taint analysis can be used to detect loops having this

vulnerability by defining the target address of a call executed in the

loop’s body as a sink if the return of the call is the condition of a

revert statement in the loop’s body. Then taint analysis checks if

tainting sources (user-defined data loaded from storage) can reach

the sink. In this example, the target address (orders[][].player) of the

transfer statement at line 23 is defined as a sink for the taint analysis.

Then, taint analysis finds data flows in the buyTicket function (line

10) in which the tainting source msg.sender is reaching the array

orders[], storing the target address of the transfer. In the EVM

bytecode, the external calls are translated into CALL instructions of

the form CALL <gas,address,value,..>. Our analysis defines as

sinks the address arguments of the CALL instructions found in the

loop body that are followed by revert instructions.

4.3 Vulnerability Protection Mechanisms

In some cases, developers follow specific programming practices

to mitigate the risk of the discussed vulnerabilities and protect the

contracts from being exploited [34]. For example, developers may

mitigate the risk of an unbounded loop by splitting the loop over

multiple transactions safely [35]. Another example is implementing

access control to prevent exploiting a vulnerability through a public

function by restricting the call of the function to only the owner of

the contract. We refer to the code patterns used to implement such

mechanisms as protective patterns. Our analysis does not report

cases with protective patterns as vulnerabilities (see Section 6.2).

5 OUR APPROACH: ETAINTER

This section presents eTainter, our taint analysis approach for detect-

ing gas-related vulnerabilities in smart contracts. At a high-level,

eTainter takes as input the EVM bytecode of the smart contract

being analyzed; it builds the Control Flow Graph (CFG) and identi-

fies the EVM instructions that introduce user data in the bytecode

(taint sources) and the EVM instructions that can form gas-related

vulnerabilities (sinks). It then extracts the CFG paths leading to the

defined sinks and performs taint analysis on these paths. Finally,

eTainter searches for possible protective patterns and excludes pro-

tected vulnerabilities. It reports the found vulnerabilities to the

users, along with the corresponding vulnerable functions causing

the vulnerabilities. In the following subsections, we explain our

approach using the running example in Figure 1.

5.1 CFG Construction

eTainter constructs a context-sensitive, inter-procedural CFG, i.e.,

constructed for the entire contract rather than for individual func-

tions. The CFG is built for the EVM runtime bytecode of the contract,

i.e., the code deployed on the Ethereum blockchain, and represents

all functions of the contract and the interaction between them.

eTainter performs an inter-procedural analysis, with any public/ex-

ternal function or fallback function in the CFG used as an entry

point for the analysis (Section 2).

732



ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

5.2 Extracting Vulnerable Paths

eTainter identifies paths leading to gas-related vulnerabilities as

specified in Algorithm 1. The algorithm takes as input the sinks for

each class of gas-related vulnerabilities (as discussed in Section 4).

It uses the algorithm proposed by Krupp et al. [19] to compute a

backward slice (over the created CFG) for each sink instruction (line

2). This is done to reduce the number of paths analyzed for taint

flows to the defined sink. If the slice contains any of the instructions

defined as taint sources, eTainter traverses the CFG and finds paths

leading to the sink under analysis, from which all instructions of

the slice can be reached, to perform taint analysis.

Then for each extracted path, starting at the root, the algo-

rithm propagates taints through the stack, memory, and storage

based on the semantics of the EVM instructions (line 4). eTainter

uses taintAnalysis function (lines 22-27), which returns a tuple

<tsink,src>, where tsink defines whether the sink being ana-

lyzed is tainted in the current path, and src is a set of the taint

sources reaching the analyzed sink. When taints reaching the sink

are loaded from slots in the contract’s storage, the algorithm checks

if the corresponding storage slots are also tainted (lines 5-16). Fi-

nally, eTainter checks for protective patterns in lines 17 and 20.

To check if a storage slot is tainted, eTainter first searches for

storage write (SSTORE) instructions in the contract and defines

them as sinks (line 7). Then eTainter traverses the CFG to find paths

leading to the defined storage sink instructions for taint analysis

(line 9), and checks for taint flow in each path (line 10) ś we discuss

this further in Section 6.1. If a taint flow is found, the address of the

storage slot written to by SSTORE is added to list of tainted slots

(lines 11-14), and the storage slot is confirmed as tainted. When the

taints flow from another storage slot (storage-to-storage taint flow)

not marked as tainted, the algorithm repeats the process to check

if this new storage-slot source is also tainted (lines 15-16).

To propagate taints, for instructions defined as sources, the pro-

cedure propagateTaint introduces taints based on the semantics

of the source instructions. Otherwise, propagateTaint propagates

taints according to the taint propagation rules (line 25). eTainter

uses three main taint propagation rules, summarized in Table 2:

Rule-1: For instructions that take one or more operands and derive

a value, if any operand is tainted, the derived value is tainted.

Rule-2: For instructions that query the state of blockchain, such

as TIMESTAMP, no taint propagation happens since blockchain state

information (e.g., block numbers, timestamp) is not manipulated

by the contract users. Similarly, no taint propagation happens for

instructions that write to the blockchain (do not include SSTORE

instruction that modify contract’s storage), such as LOGn instruc-

tions that archive logs generated by the contract events and CREATE

instruction that creates other contracts. The changes made by such

instructions neither influence the contract execution nor change

the contract state (e.g., the logs written to the blockchain are not

accessible from the contract code).

Rule-3: For instructions that read their input from memory (e.g.,

SHA3), if the data read from memory is tainted, the result value

is tainted. The same holds for loading data from storage using

SLOAD instruction. eTainter considers taintedness of the loaded data

rather than addresses. For example, when propagating taints for

V=SLOAD(𝑠𝑖) instruction that loads data from the storage address

Table 2: Taint propagation rules. INS = Instruction.

Rule-1 V = INS (x1, ..., xn), ∃xi ∈ Tainted =⇒ V = tainted

Rule-2 BlockChain = INS ∥ INS = BlockChain ≠⇒ Propagate

Rule-3 V = INS (mi/si),mi/si ∈ Tainted =⇒ V = tainted

𝑠𝑖 , eTainter will mark V tainted only if the data stored at location 𝑠𝑖
is tainted. To do so, eTainter propagates taints through the contract

storage.

Propagating taints through the contract storage is challenging

for two main reasons. First, the data stored in the contract storage

is persistent (i.e., maintained over transactions). Second, EVM uses

an unconventional method to access arrays and mappings stored in

the contract storage. We discuss how we address these challenges

next in Section 6.1.

Algorithm 1: Extracting vulnerable paths

Input: sources,sinks,cfg

Output: {Pv,Pt} ⊲ Vulnerable & tainting paths

1 begin

2 slices← BackwardSlicing(sinks,cfg)

3 foreach Path p ∈ ExtrPaths(slices,sinks,cfg) do

4 <tsink,src>← TaintAnalysis(p,sources,sink)

5 if tsink & src ∈ Storage then

6 tSlots← {} ⊲ list of tainted storage slots

7 sSinks← find(sstore)

8 sSlices← BackwardSlicing(sSinks,cfg)

9 foreach path ps ∈

ExtrPaths(sSlices,sSinks,cfg) do

10 <tslot,src>←

TaintAnalysis(ps,sources,sSink)

11 if tslot & (src ∉ Storage | src ∈ tSlots)

then

12 if src ∉ Storage then
⊲ Add address of sstore sink to the list of tainted slots

13 tSlots← tSlots ∪ sSink.addr

14 break

15 else if src ∈ Storage then

16 go to 7

17 if tslot & not IsProtected(p,ps) then
⊲ No protective patterns

18 {Pv,Pt}← {Pv,Pt} ∪ {p,ps}

19 else if 𝑡𝑠𝑖𝑛𝑘 then

20 if not IsProtected(p) then

21 {Pv,Pt}← {Pv,Pt} ∪ {p,p}

22 Procedure TaintAnalysis(𝑃 , 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 , 𝑠𝑖𝑛𝑘)

23 foreach 𝑖𝑛𝑠𝑡𝑟 ∈ 𝑃 do

24 if instr ∈ Sources | instr ∉ sink then

25 <tMem′,tStorage′,tStack′>←

PropagateTaint(tMem,tStorage,tStack)

26 else if instr ∈ sink & sink ∈ Tainted then

27 return {true, taint sources reaching sink}

5.3 Implementation

We have implemented eTainter in an automated tool that works

on the EVM bytecode of smart contracts. eTainter generates the

733



eTainter: Detecting Gas-Related Vulnerabilities in Smart Contracts ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

bytecode by compiling the input source code using the solc Solidity

compiler. eTainter uses a modified version (modified in this work)

of the code used in teETher [19], a symbolic analysis framework

for smart contracts, to generate the control flow graph (CFG) and

compute backward slices. Further, eTainter uses rattle [14], a frame-

work for recovering the Static Single Assignment (SSA) [7] form of

the bytecode as the current implementation of eTainter uses SSA

form for performing taint analysis to handle data overwrites.

6 DESIGN DECISIONS

In this section, we discuss the design decisions we made while

implementing our approach to address challenges of (1) propagating

taints through storage and memory, (2) checking for protective

patterns, and (3) identifying loops in the EVM bytecode.

6.1 Handling Storage and Memory Taints

Unlike in traditional languages, taint analysis in smart contracts

has to deal with the contract’s storage, used to store persistent

data, besides volatile memory, used to store transient data. In this

section, we discuss the challenges encountered in propagating taints

in storage and memory, and how we address them.

6.1.1 Validating Storage Taints. When the taint analysis module

finds a flow of tainted data loaded from the storage to a specific

sink, the sink will be flagged along with the storage slot(s) from

which the data is loaded. However, considering all data loaded from

the storage as tainted data will increase the number of false positive

cases, as not all storage slots can be manipulated by the contract’s

users. For example, in the loop at line 21 of the running example, the

taint analysis module finds that the value of łorders[game].lengthž

(marked as tainted since it is loaded from the storage) reaches the

loop condition łi<orders[game].lengthž defined as a sink. eTainter

needs to check whether users of the contract can indeed change the

value of łorders[game].lengthž to mark it as tainted, as only then

can the array grow over time, and the vulnerability be exploited.

As specified in lines 5-16 of Algorithm 1, eTainter addresses this

challenge by recursively checking for possible taint flows that could

reach these storage slots. eTainter first marks these storage slots as

sinks (orders[game].length in the example), and then performs taint

analysis to check if tainted data is written to these storage slots.

If so, then the storage slots under analysis are confirmed as taint

sources. However, in some cases, eTainter cannot locate the SSTORE

instructions writing to these specific storage slots to mark them

as sinks (some storage addresses used in SSTORE instructions are

resolved through constant propagation during taint analysis as we

will discuss in the following section 6.1.2). eTainter gets around this

limitation by extracting all paths leading to all SSTORE instructions

in the contract’s bytecode. Later, during taint analysis, the storage

addresses are resolved, and eTainter is able to check the flow of

tainted data to only the storage slots under analysis.

Handling paths leading to all SSTORE instructions would be

rather expensive. However, extracting paths leading to SSTORE

based on slices containing taint sources would reduce the number

of the extracted paths. Further, when the taint analyzer finds a

vulnerable path, it will stop the analysis of the remaining paths. We

found the performance to be quite reasonable in our experiments.

6.1.2 Dealing with Hashed Addresses. Hashed addresses used to

reference individual items within arrays and mappings pose two

main challenges in propagating taints through the contract storage:

(1) difficulty to know the parent array ormapping of an item from its

hashed address; and (2) dealing with the cases when the calculation

of a hash address depends on user inputs.

To explain the first challenge, in our running example, the vari-

able łfeež is stored in the storage at address 0 and the array łorders[]ž

is stored starting, say, at address 2. The first slot of the array (ad-

dress 2 in this example) is used to store the length of the array.

However, the addresses of the array’s elements are calculated using

the EVM instruction SHA3, which computes the Keccak-256 hash of

the array length (stored at address 2). Then the element’s index is

added to the calculated hash to obtain the element’s address. For

instance, the array element 𝑜𝑟𝑑𝑒𝑟𝑠 [] [1] will be stored in the ad-

dress calculated as 𝑆𝐻𝐴3(𝑜𝑟𝑑𝑒𝑟𝑠 [] .𝑙𝑒𝑛𝑔𝑡ℎ) +1. The loop at line 21 is

unbounded by the dynamic array łorders[].lengthž that grows over

time in the public function buyTicket (line 10). When the function

buyTicket is called, an item will be added to the array and stored in

a new storage slot, for example at address ’X’, and no tainted data

will propagate to the storage slot storing łorders[].lengthž, as this

slot will be incremented by a constant value 1. Therefore, it is not

straightforward for eTainter to decide that this address is part of

the array łorders[]ž, and that tainting the slot at ’X’ will also taint

the slot storing łorders[].lengthž.

To address this challenge, eTainter propagates the taint to the

slot that stores the length of an array/mapping when one of its slots

is tainted. To do this, eTainter keeps track of the addresses of the

base slots used for calculating storage hash addresses (e.g., the base

slot for the hash address calculated through ł𝑆𝐻𝐴3(1) + 2ž is 1)

when propagating taints. Thus, when eTainter finds that the storage

slot at address 𝑆𝐻𝐴3(1) + 2 is being tainted, it will also mark the

storage slots of the array with the base address ł1ž as tainted.

As for the second challenge, when propagating taints through

storage arrays and mappings, not all the addresses used by storage

instructions (SLOAD and SSTORE) are constants (stated in the byte-

code). To handle these cases, eTainter resolves the address used in

the SLOAD or SSTORE instruction by propagating constants through

the other EVM instructions that derive the address. When eTainter

cannot resolve the address due to a dependency on user data inputs,

which makes precise modeling infeasible, it over-approximates and

considers the whole array or mapping as tainted. In our analysis,

we preferred to over-approximate for two reasons. First, adding ele-

ments to an array results in increasing the array’s size, and most of

the unbounded loops occur due to being bounded by the array sizes

of dynamic arrays. Hence, ignoring these cases when addresses

are unresolvable will result in several false negatives. Second, the

łDoS with failed call" vulnerabilities can result from the attacker

tainting a single element of the array/mapping that stores the tar-

get addresses of external calls performed within loops. Hence, we

over-approximate to detect these cases when we are not able to

resolve the address for an individual element of an array/mapping.

In EVM, the base addresses of arrays and mappings are always

constant, and as mentioned above, eTainter keeps track of the arrays

and mappings base addresses. This enables eTainter to identify the

arrays or mappings to which an item belongs even when the item

index/key is not a constant.

734



ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

6.1.3 Handling Memory Taints. eTainter propagates taints through

the contract’s memory since few instructions use memory as in-

put/output buffer. The challenge faced for modeling memory taints

propagation statically in EVM bytecode is that not all offsets used

in memory instructions are constant values. In our analysis, eTain-

ter implements memory modeling that favors precision. eTainter

resolves offsets by propagating constants through code instructions

that derive memory offsets for memory-based instructions, and

it handles memory locations accessed by instructions with unre-

solved offsets as untainted. This modeling might be incomplete, but

it covers the needs of our analysis.

Previous work [30] showed that 80% of offsets in memory writ-

ing instructions (MSTORE) and 85% in memory reading istructions

(MLOAD) are statically resolved. Further, most of the unresolved off-

sets are in instructions that usememory to call other contracts (CALL

and DELEGATECALL), log events (LOG1), and halt (RETURN) or revert

(REVERT) contract execution [20]. eTainter performs intra-contract

analysis and is hence not affected by calling other contracts, and

the other instructions either end (RETURN and REVERT) or do not

influence contract execution (LOG1).

6.2 Checking for Protective Patterns

To enhance the precision of eTainter in reporting true vulnerabilities,

the taint analysis excludes vulnerable paths that implement the

following protective patterns.

6.2.1 Use of Access Control. One of the common practices in smart

contracts is the use of function modifiers (Solidity’s special con-

struct) to restrict the call of public functions to only the contract’s

owner or specific addresses. A function modifier checks a condi-

tion before the execution of the function. In addition to the use of

modifiers, developers could implement checks on the function’s

caller within the function code itself, such as łrequire(msg.sender ==

owner)ž that halt the execution of the function, and reverts changes

when the function is called by any address except the owner. eTain-

ter excludes such vulnerabilities that can be exploited only by the

contract’s owner or authorized users.

6.2.2 Resumable Loops. To protect against DoS attacks when exe-

cuting unbounded loops, developers may write loops that are split

across multiple transactions. The common practice is to check the

available gas in each iteration, store the last successful point of the

loop in a storage variable, and resume the loop from this point in

the next run. eTainter excludes vulnerable paths leading to loops

implementing these patterns by looking for the code patterns that

check available gas either in the loop header or in the loop body.

Gas checks might have other uses as well; however, gas checks

within loops are usually implemented to prevent DoS attacks, and

hence eTainter does not report these loops.

6.3 Deriving Bytecode’s Loops

To define sinks for the unbounded loops, eTainter needs to derive

loops from the bytecode. However, smart contracts’ bytecode often

contains several benign loops generated by the compiler that iterate

through dynamic arrays, which do not correspond to any iterative

pattern in the source code. These loops are used for cases such

as handling operations over data items of type strings and bytes

(in EVM, data items of type strings and bytes are represented as

dynamic arrays). Identifying these loops as vulnerable by eTainter

would result in several false-positives. Hence, eTainter uses static-

analysis-based filters (during the definition of the sinks) to filter out

these loops. The filters rely mainly on the observation that these

loops have a simple structure (exactly two basic blocks; a header

and body), and have unique instruction patterns. These patterns are

unlikely to overlap with user-defined loops because of the simple

functionality of these loops (e.g., initialize a string data item).

For example, in the code: function set(string _n) {name = _n;}

the compiler forms a loop to assign the string received as a pa-

rameter (_n) to the storage variable (name). The simplified body of

this loop (does not involve stack instructions) matches the pattern

(MLOAD SSTORE ADD ADD JUMPI), and is preceded by a code pattern

that pushes the length of the string (name) on the stack. Therefore,

eTainter filters this loop out.

7 EVALUATION

Our evaluation aims to answer three research questions (RQs):

RQ1. What is the effectiveness of eTainter in detecting gas-related

vulnerabilities compared with MadMax?

RQ2.What is the performance of eTainter in terms of its analysis

time and memory consumption?

RQ3.What is the prevalence of the gas-related vulnerabilities ad-

dressed by eTainter in real-world Ethereum contracts?

7.1 Experimental Setup

7.1.1 Datasets. To conduct our experiments, we used three datasets

as shown in Table 3. The first is an annotated dataset consisting

of 28 unique smart contracts, and we use it to compare eTainter

with MadMax [17]. Eight of these contracts had been previously

used to evaluate the precision of MadMax [17], which we obtained

from the authors - we call these MadMax contracts. MadMax had

originally been evaluated on 13 contracts, but we excluded five of

the contracts that are vulnerable to loop overflows. This is because

loop overflows due to casting are statically detected by the current

versions of Solidity compilers, i.e., they result in compilation errors.

The other 20 contracts are from those deployed on the Ethereum

blockchain, selected randomly from among the contracts flagged

by MadMax as vulnerable. We call these the random contracts.

We have manually inspected all the 28 contracts and annotated

all the vulnerabilities that belong to the two classes: (1) unbounded

loops, and (2) DoS with failed call. The inspection process is done

by two researchers to avoid bias, one of whom is this paper’s co-

author. Each researcher separately annotated vulnerabilities, and

finally, only the vulnerabilities agreed on by both the researchers

are annotated in the contracts. We call this the łAnnotated datasetž.

The second dataset is obtained by downloading a snapshot of the

Ethereum blockchain, and extracting the contracts from it using

Ethereum Etl [15], an open-source tool. We have extracted 856, 121

contracts from the snapshot taken on Jan 30, 2021. We removed

the duplicates through running the md5sum checksum (as done by

Duriex et al. [9]) on the contracts’ binary code, we ended up with

60,612 unique contracts. We refer to this as the łEthereum datasetž.

Finally, we extracted 3,000 contracts deployed on Ethereum

blockchain that have the largest number of transactions. These

735



eTainter: Detecting Gas-Related Vulnerabilities in Smart Contracts ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Table 3: Datasets used in our evaluation.

Dataset Number of unique contracts

Annotated dataset 28
Ethereum dataset 60,612
Popular-contracts dataset 3,000

have 89,000 transactions on average, while the average transactions

overall is only 129. We call this the łPopular-contracts datasetž.

7.1.2 Methods and Metrics. We run all experiments on ten Intel

Xeon 2.5GHz machines, allocating one core and 48GB of RAM for

each run on each machine. In our experiments, we set a timeout

value of 5 minutes per smart contract.

To answer RQ1, eTainter is compared with the MadMax tool in

terms of its effectiveness in detecting gas-based vulnerabilities on

the Annotated dataset. We inspect the reported vulnerabilities by

MadMax and eTainter to determine if these reported vulnerabilities

are true-positives or false-positives, based on the annotations of the

vulnerabilities in the contracts. We use the inspection results to es-

timate the precision, recall, and the F1 score (harmonic mean of the

precision and recall) for both tools. Further, to remove any bias due

to the choice of contracts, we estimate the precision, recall, and the

F1 score separately based on the inspection results of (1) MadMax

contracts and (2) the random contracts. In our comparison, we use

the current version of MadMax [13], along with MadMax’s online

deployment [32] as it prints analysis logs in a readable format.

To answer RQ2, we use eTainter to analyze each contract in the

Ethereum dataset, and calculate the average time for the contracts

that were analyzed successfully. If the analysis exceeded the timeout

value, we terminate it, and consider eTainter as unable to analyze

the contract. We also measure its memory usage.

To answer RQ3, we ran eTainter on the Ethereum dataset to

determine how prevalent are gas-related vulnerabilities in real-

world contracts. For each vulnerability class, we count the contracts

that contain at least one instance of the class. We also run eTainter

on the Popular-contracts dataset to determine how prevalent are

gas-related vulnerabilities in widely-used real-world contracts.

We made the artifact of the paper, including the annotated

dataset, publicly available at [16].

7.2 Results

RQ1 (Comparison with MadMax). Table 4 shows a summary of the

comparison of eTainter with MadMax on the Annotated dataset.

The first part shows the comparison results using the MadMax

contracts, while the second part shows the comparison results

using the random contracts. In each part, the column (Annotated)

shows the number of vulnerabilities in the contracts for each class.

The other columns show the vulnerabilities reported by both tools

(#N), the true-positives (TPs), and the false-positives (FPs). The

table shows the precision, recall, and F1 score for each tool.

eTainter reported 36 of the 37 true vulnerabilities reported by Mad-

Max, and 11 additional true vulnerabilities. In all, eTainter reported

47 out of the 50 vulnerabilities annotated in the 28 contracts (we

later discuss the reason for the three false-negatives). Thus, eTainter

has an overall precision of 90.4%, a recall of 94%, and an F1 score

of 92.2%. In comparison, MadMax had a precision of 64.9% and a

recall of 74%, which leads to an F1 score of 69.2%.

Examining the results by vulnerability class, for unbounded loops,

MadMax exhibits low precision (60.5%) and recall (70.2%). In con-

trast, eTainter exhibits high precision (87.5 %) and recall (94.6%) for

this class. For DoS with failed call, eTainter exhibits perfect precision

(100%) and a high recall (92.3%), while the precision and recall of

MadMax for this class are 78.5% and 84.6%, respectively.

Table 4 shows the results of the tools for both MadMax contracts

and the random contracts separately to study whether the choice of

the random contracts biases the results. Madmax performed slightly

better on the random contracts than on the MadMax contracts (F1

score of 70.2% compared to 61.5%). However, eTainter performed

similarly on both sets (F1 score of 90.9% on the Madmax contracts

and 92.3% on the random contracts). Thus, we believe that the

choice of the random contracts did not introduce bias.

Note that in our comparison with MadMax on the MadMax con-

tracts, we could not reproduce the results reported in MadMax’s

paper using the current version of MadMax available on GitHub

(commit#6e9a6e99c6) [13]. Specifically, the number of reported

false-positives by the current version is higher (MadMax’s paper

reported only false-positives). When we contacted MadMax’s au-

thors about this, they clarified that the main difference is that the

current version of MadMax considers that DoS attacks by owners

of a smart contract do not count as a vulnerability. However, we do

not believe that this was the reason for the difference in MadMax’s

results, as we did not consider these as true bugs in our annotation

of the contracts (and neither does eTainter).

To understand the false negative cases of Madmax for all anno-

tated contracts, we find that MadMax did not detect five unbounded

loops (reported by eTainter) controlled by dynamic items defined

within complex structures. Further, all unbounded loops that are

controlled by data values stored in memory that reference storage

data items are not detected by MadMax - these resulted in three

undetected cases. Finally, MadMax’s inference rules do not detect

DoS with failed call if the Ether transfer is performed by internal

functions, called inside the loop, rather than directly within the

loop body. An example is shown in Figure 2. The loop at line 7 calls

the internal function send() at line 9, to send Ether. However, this

is not detected by MadMax. In contrast, eTainter tracks data flow

throughout the contract, and can hence detect these vulnerabilities.

1 // Safely sends the ETH by the passed parameters

2 function send(address _receiver , uint _amount) internal {

3 if (_amount > 0 && _receiver != address (0)) {

4 _receiver.transfer(_amount);}

5 }

6 function placeBets () internal {

7 for (uint i=currentIndex; i < bets.length; i++) {

8 Bet memory bet = bets[i];

9 send(bet.player , payout);}

10 }

Figure 2: A vulnerability found by eTainter but not MadMax.

We also find that many false positive cases reported by MadMax

were bounded loops that exist only in the bytecode. Further, several

other false-positives were due to loops iterating through static

arrays that do not grow over time. Figure 3 shows an example, where

736



ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

Table 4: Summary of comparison results of eTainter with MadMax for the annotated dataset. #N= Reported vulnerabilities. TP =

True Positive. FP = False Positive.

MadMax Contracts Random Contracts Overall

Vulnerability Annotated
MadMax eTainter

Annotated
MadMax eTainter

MadMax eTainter
#N TPs FPs #N TPs FPs #N TPs FPs #N TPs FPs

Unbounded loops 4 7 3 4 5 4 1 33 36 23 13 35 31 4
DoS with failed call 1 1 1 0 1 1 0 12 13 10 3 11 11 0

Precision 4/8 (50.0%) 5/6 (83.3%) 33/49 (67.3%) 42/46 (91.3%) 37/57 (64.9%) 47/52 (90.4%)

Recall 4/5 (80%) 5/5 (100%) 33/45 (73.3%) 42/45 (93.3%) 37/50 (74%) 47/50 (94%)

F1 score 61.5% 90.9% 70.2% 92.3% 69.2% 92.2%

the loop at line 2 is reported by MadMax as an unbounded loop, as

it iterates through the storage array owners. ś MadMax considers a

loop using the size of a storage array (referenced by any storage

write instruction) in its exit condition as an unbounded loop. This

array is populated by calling the private function addOwner_, which

is called only within the constructor1, and is hence not vulnerable.

In contrast, by finding no dataflow leading to the storage array

owners, eTainter concludes that the owners array does not grow over

time, and hence does not report it. Thus, tracking data flow results

in a more precise approach to detect gas-based. vulnerabilities.

1 function removeOwner(address owner) external onlyOwner {

2 for (uint i = 0; i < owners.length; i++)

3 { // some code //}

4 }

5 function addOwner_(address owner) private {

6 if (! isOwner[owner ]) {

7 isOwner[owner] = true;

8 owners.push(owner); }

9 }

Figure 3: False positive case reported by MadMax.

As mentioned, Table 4 shows that eTainter has two false negative

cases of unbounded loops and one negative case of DoS with failed

call. By analyzing these cases we found that the loop in one case

was not defined as a sink by eTainter as its form overlaps with a

filter that eTainter uses to exclude benign loops used to manipulate

strings (discussed in 6.3). Therefore, the vulnerability is not detected

by eTainter. While we can potentially detect this by enhancing the

sinks defining module, it may increase the false positive rate of

eTainter. Therefore, we did not implement it. The second case was

not detected due to an internal error in the code of the tool rattle

used by eTainter to build the SSA form. This was also the cause

behind the undetected case of DoS with failed call.

Further, eTainter reported five false positive cases as łUnbounded

loopsž. After looking into the code of these contracts, we found that

two cases were reported in a contract, in which an array size was

used as a bound for the two loops. However, the code limits the

number of elements that can be added to the array, thus preventing

it from growing in an unbounded fashion. This occurs as eTainter

does not take into account any sanity checks for sizes of the arrays

used in loops, as it is not straightforward to decide when a check is

valid. However, blindly excluding all such checks by eTainter can

result in false-negatives.

1A contract constructor is executed only once during the contract creation, and its
code is not part of the runtime bytecode deployed on the blockchain

Another false positive case is the code pattern łuint lastIndex =

airdrops.length++;ž. The reason for this case is that this code pattern

increases the length of the array airdrops by 1 and forms a loop in

the bytecode similar to łwhile (i < airdrops.length) {i++; some code}ž,

and the value of łiž is set to łairdrops.length+1ž, as shown in the

simplified SSA form of the bytecode in Figure 4. Although the size

of the array, łairdropsž, is unbounded, the value of łiž makes the

loop condition evaluate to false; it only evaluates to true in the rare

case of overflow of łairdrops.length+1ž. Static analysis approaches

such as eTainter cannot typically handle such dynamic constraints

imposed at runtime, and they will hence result in false positives.

Figure 4: Another false positive case reported by eTainter.

The remaining two false positive cases of eTainter arise due

to how the EVM deals with strings. As mentioned in Section 5,

eTainter filters out loops introduced in the bytecode due to string

manipulation in the Solidity source code. However, in some cases,

the filtering fails, and the loops are incorrectly reported as they use

the dynamic sizes of the string arrays as loop bounds.

Answer to RQ1: eTainter finds higher number of true vulnera-

bilities than MaxMax, and has fewer false-positives. Thus, it has

both higher recall and precision than MadMax.

RQ2 (Performance of eTainter). eTainter timed out in 12% of the

contracts in the Ethereum dataset with a timeout value of 5 minutes.

We find that the timeouts in 6,210 (10.3%) out of 7,279 contracts (12%)

happen during the CFG generation by teETher [19], and conversion

to SSA form by rattle [14]. We experimented with larger timeout

values (15 minutes and 90 minutes) for a set of 1000 contracts,

but this did not substantially increase the number of the contracts

analyzed successfully (the number of such contracts increased by

less than 1% in both cases). We ran MadMax on the Ethereum

dataset, and we find that MadMax timed out in only 1.4% of the

contracts; thus MadMax scales better than eTainter.

For the remaining contracts that were analyzed successfully, the

average time of analysis by eTainter, including CFG generation and

737



eTainter: Detecting Gas-Related Vulnerabilities in Smart Contracts ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

conversion to SSA form, is 8 seconds. This is comparable to the average

time taken by MadMax (6s). The minimum time taken by eTainter

is 0.1 second, and the maximum time is 300 seconds (5 minutes).

The average memory consumption of eTainter is 118MB (maximum

of 1.77GB). Finally, 96.97% of the contracts that eTainter analyzed

successfully had an analysis time of less than 60 seconds.

Answer to RQ2: eTainter has an average analysis time of 8

seconds, and a memory consumption of 118MB per contract.

RQ3 (Prevalence of Gas-Related Vulnerabilities).

EthereumDataset: eTainter flagged 2,763 contracts in the Ethereum

dataset as having gas-related vulnerabilities, which constitutes 4.6%

of the contracts. Table 5 shows the percentage of vulnerable con-

tracts for each class in the Ethereum dataset. The results indicate

that the addressed vulnerability classes are prevalent in real-world

contracts, even after excluding the fraction of estimated false-positives.

We find that 4.1% of the contracts contain unbounded loops, and

1.2% contain loops with external calls that perform a bulk transfer

of Ether to several addresses. These contracts are vulnerable to DoS

attacks that can result in blocking the use of the contracts forever.

Popular-Contracts Dataset: Table 5 shows the percentage of the

vulnerable contracts for each class in the Popular-contracts dataset.

In this dataset, eTainter flagged 71 contracts (2.4% of the contracts)

as having gas-related vulnerabilities. The percentage of contracts

vulnerable to łUnbounded loopsž and łDoS with failed callž is lower

in the Popular-contracts dataset (1.8% and 0.8%, respectively, com-

pared to 4.1% and 1.2% in the Ethereum dataset). This result is along

expected lines because contracts in the Popular-contracts dataset

are less likely to be vulnerable than other contracts [26].

Answer to RQ3: eTainter finds gas-related vulnerabilities in

over 4.6% of the contracts in Ethereum dataset, and in 2.4% of

the most frequently used contracts. Both classes of gas-related

vulnerabilities are prevalent in both sets of contracts.

8 THREATS TO VALIDITY AND LIMITATIONS

Threats to Validity. An External threat to validity is the limited num-

ber of smart contracts (28) used to compare eTainter with MadMax.

This is due to the time needed to inspect contracts manually (by

two researchers) and annotate the vulnerabilities in them, due to

the lack of any publicly labelled dataset for the same. We have

partially mitigated this threat in two ways. First, we have included

all the contracts that were used in MadMax’s paper [17] (barring

those that no longer compile). Second, the remaining 20 contracts

were selected randomly from the Ethereum blockchain.

Table 5: Percentage of vulnerable contracts reported by eTain-

ter in the Ethereum and Popular-contracts datasets.

Vulnerability Ethereum Popular-contracts

Unbounded loops 4.1% 1.8%
DoS with failed call 1.2% 0.8%

An Internal threat to validity is the potential bias in annotating

the vulnerabilities in the 28 smart contracts of the annotated dataset.

We have mitigated this threat by having two researchers in the area

performing the annotation independently, and including only the

vulnerabilities agreed on by both researchers as true vulnerabilities.

Limitations. eTainter works on finding gas-based vulnerabilities

caused due to dependency on user data. However, there might be

unbounded loops that depend on data items (e.g., arrays) growing

over time by adding new items of constant values into the array,

which would not be detected (we did not find any such cases).

Another limitation is that eTainter uses other tools to generate

the CFG, and lift the bytecode to the SSA form. These tools caused

a timeout in many contracts (12%), and hence eTainter was not able

to analyze these contracts.

9 CONCLUSION

This paper proposed eTainter, a static analysis approach for find-

ing gas-related vulnerabilities in smart contracts, using static taint

analysis on the contract’s EVM bytecode. We evaluated eTainter on

a set of 28 annotated contracts as well as on over 60, 000 unique,

real-world contracts deployed on Ethereum. The results show that

eTainter is able to find gas-related vulnerabilities with a precision

of over 90%, and an average time of 8 seconds per contract. Fur-

ther, the results show that eTainter has higher recall than the prior

work, MadMax, and achieves higher precision as well. Finally, gas-

related vulnerabilities are prevalent in real-world smart contracts

on Ethereum, including the most frequently used contracts.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the Natural Sci-

ences and Engineering Research Council of Canada (NSERC), and

the Four Year Fellowship from UBC. We thank the anonymous

reviewers of ISSTA’22 for their helpful comments.

REFERENCES
[1] Imran Ashraf, Xiaoxue Ma, Bo Jiang, and WK Chan. 2020. GasFuzzer: Fuzzing

Ethereum Smart Contract Binaries to Expose Gas-Oriented Exception Security
Vulnerabilities. IEEE Access 8 (2020), 99552ś99564. https://doi.org/10.1109/
ACCESS.2020.2995183

[2] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: a smart contract security analyzer for composite vulner-
abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454ś469. https://doi.org/10.1145/3385412.
3385990

[3] Ting Chen, Youzheng Feng, Zihao Li, Hao Zhou, Xiapu Luo, Xiaoqi Li, Xiuzhuo
Xiao, Jiachi Chen, and Xiaosong Zhang. 2020. Gaschecker: Scalable analysis for
discovering gas-inefficient smart contracts. IEEE Transactions on Emerging Topics
in Computing (2020). https://doi.org/10.1109/TETC.2020.2979019

[4] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized
smart contracts devour your money. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 442ś446. https:
//doi.org/10.1109/SANER.2017.7884650

[5] Ting Chen, Zihao Li, Hao Zhou, Jiachi Chen, Xiapu Luo, Xiaoqi Li, and Xiaosong
Zhang. 2018. Towards saving money in using smart contracts. In 2018 IEEE/ACM
40th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results (ICSE-NIER). IEEE, 81ś84.

[6] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with
Static and Dynamic Data-Flow Analyses. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 227ś239. https:
//doi.org/10.1109/ASE51524.2021.9678888

[7] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. 1989. An efficient method of computing static single assignment form.

738

https://doi.org/10.1109/ACCESS.2020.2995183
https://doi.org/10.1109/ACCESS.2020.2995183
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1109/TETC.2020.2979019
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1109/ASE51524.2021.9678888


ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman

In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 25ś35.

[8] Solidity documentation. 2022. Gas Limit and Loops. https://docs.soliditylang.
org/en/v0.5.11/security-considerations.html#gas-limit-and-loops

[9] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE). 530ś541. https://doi.org/10.1145/3377811.3380364

[10] Etherscan. 2021. PIPOT contract. https://etherscan.io/address/
0x14d01b02d1a2aa051082810d77f8d64c80937cd5#code

[11] Asem Ghaleb and Karthik Pattabiraman. 2020. How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 415ś427. https://doi.org/10.1145/3395363.3397385

[12] Github. 2015. The Solidity Contract-Oriented Programming Language. https:
//github.com/ethereum/solidity

[13] Github. 2018. MadMax. https://github.com/nevillegrech/MadMax
[14] Github. 2018. rattle. https://github.com/crytic/rattle
[15] Github. 2020. Ethereum ETL. https://github.com/blockchain-etl/ethereum-etl
[16] Github. 2022. eTainter. https://github.com/DependableSystemsLab/eTainter
[17] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and

Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1ś27. https://doi.org/10.1145/3276486

[18] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2020. MadMax: Analyzing the out-of-gas world of smart
contracts. Commun. ACM 63, 10 (2020), 87ś95. https://doi.org/10.1145/3416262

[19] Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at ethereum to
automatically exploit smart contracts. In 27th 𝑈𝑆𝐸𝑁𝐼𝑋 Security Symposium
(𝑈𝑆𝐸𝑁𝐼𝑋 Security 18). 1317ś1333.

[20] Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis Smaragdakis. 2020.
Precise static modeling of Ethereum łmemoryž. Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020), 1ś26. https://doi.org/10.1145/3428258

[21] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 254ś269. https:
//doi.org/10.1145/2976749.2978309

[22] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186ś1189. https://doi.org/10.1109/ASE.2019.00133

[23] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference. 653ś663. https:

//doi.org/10.1145/3274694.3274743
[24] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:

Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

[25] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications 21, 1 (2003), 5ś19.
https://doi.org/10.1109/JSAC.2002.806121

[26] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyl-
lou, and Ilias Tsatiris. 2021. Symbolic value-flow static analysis: deep, precise,
complete modeling of Ethereum smart contracts. Proceedings of the ACM on Pro-
gramming Languages 5, OOPSLA (2021), 1ś30. https://doi.org/10.1145/3485540

[27] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. SmartCheck: Static Analysis
of Ethereum Smart Contracts. (2018). https://doi.org/10.1145/3194113.3194115

[28] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. 2021. A survey
of smart contract formal specification and verification. ACM Computing Surveys
(CSUR) 54, 7 (2021), 1ś38. https://doi.org/10.1145/3464421

[29] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference. 664ś676. https://doi.org/10.1145/
3274694.3274737

[30] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67ś82. https://doi.org/10.1145/3243734.3243780

[31] Web. 2016. GovernMental. https://www.reddit.com/r/ethereum/comments/
4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck

[32] Web. 2021. contract-library. https://contract-library.com
[33] Web. 2021. Decentralized Application Security Project (or DASP) Top 10. https:

//dasp.co
[34] Web. 2021. Ethereum Wiki: Ethereum Contract Security Techniques and Tips.

https://eth.wiki/en/howto/smart-contract-safety
[35] Web. 2022. DoS with Block Gas Limit. https://consensys.github.io/smart-

contract-best-practices/known_attacks/#dos-with-block-gas-limit
[36] Web. 2022. DoS with Failed Call. https://swcregistry.io/docs/SWC-113
[37] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1ś32.
[38] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro Ya-

mashita, and Hidetoshi Kurihara. 2018. Security assurance for smart contract. In
2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 1ś5. https://doi.org/10.1109/NTMS.2018.8328743

[39] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach D Le, Xin Xia, Yang
Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development: Chal-
lenges and opportunities. IEEE Transactions on Software Engineering (2019).
https://doi.org/10.1109/TSE.2019.2942301

739

https://docs.soliditylang.org/en/v0.5.11/security-considerations.html#gas-limit-and-loops
https://docs.soliditylang.org/en/v0.5.11/security-considerations.html#gas-limit-and-loops
https://doi.org/10.1145/3377811.3380364
https://etherscan.io/address/0x14d01b02d1a2aa051082810d77f8d64c80937cd5#code
https://etherscan.io/address/0x14d01b02d1a2aa051082810d77f8d64c80937cd5#code
https://doi.org/10.1145/3395363.3397385
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/nevillegrech/MadMax
https://github.com/crytic/rattle
https://github.com/blockchain-etl/ethereum-etl
https://github.com/DependableSystemsLab/eTainter
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3416262
https://doi.org/10.1145/3428258
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3485540
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3243734.3243780
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck
https://contract-library.com
https://dasp.co
https://dasp.co
https://eth.wiki/en/howto/smart-contract-safety
https://consensys.github.io/smart-contract-best-practices/known_attacks/#dos-with-block-gas-limit
https://consensys.github.io/smart-contract-best-practices/known_attacks/#dos-with-block-gas-limit
https://swcregistry.io/docs/SWC-113
https://doi.org/10.1109/NTMS.2018.8328743
https://doi.org/10.1109/TSE.2019.2942301

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Ethereum Smart Contracts
	2.2 EVM Bytecode
	2.3 Taint Analysis
	2.4 Related Static Analysis Tools

	3 Motivating Example
	4 Gas-related Vulnerabilities and Detection Via Taint Analysis
	4.1 Taint Sources
	4.2 Gas-Related Vulnerabilities
	4.3 Vulnerability Protection Mechanisms

	5 Our approach: eTainter
	5.1 CFG Construction
	5.2 Extracting Vulnerable Paths
	5.3 Implementation

	6 Design Decisions
	6.1 Handling Storage and Memory Taints
	6.2 Checking for Protective Patterns
	6.3 Deriving Bytecode's Loops

	7 Evaluation
	7.1 Experimental Setup
	7.2 Results

	8 Threats to Validity and Limitations
	9 Conclusion
	Acknowledgments
	References

